我正在尝试理解python代码,该代码使用$ wine REG QUERY "HKLM\Software\Microsoft\Windows NT\CurrentVersion" /v ProductName
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion
ProductName REG_SZ Microsoft Windows 7
将4维numpy数组numpy.einsum()
转换为2维或3维数组。传递给A
的下标如下:
numpy.einsum()
等按照(Understanding NumPy's einsum和(Python - Sum 4D Array)的答案,我尝试使用Mat1 = np.einsum('aabb->ab', A)
Mat2 = np.einsum('abab->ab', A)
Mat3 = np.einsum('abba->ab', A)
T1 = np.einsum('abcb->abc' A)
T2 = np.einsum('abbc->abc', A)
来理解上述下标的含义,例如numpy.sum()
,但我无法复制结果,这是我用Mat1 = np.sum(A, axis=(0,3))
获得的。
有人可以解释在numpy.einsum()
中如何解释这些下标吗?
答案 0 :(得分:1)
我建议您阅读Einstein notation on Wikipedia。
这是您问题的简短答案:
np.einsum('aabb->ab', A)
表示:
res = np.empty((max_a, max_b), dtype=A.dtype)
for a in range(max_a):
for b in range(max_b):
res[a, b] = A[a, a, b, b]
return res
简短说明:
aabb
表示索引及其相等性(请参见A[a, a, b, b]
);
->ab
表示形状为(max_a, max_b)
,并且您不需要在这两个索引上有两个具有和。 (如果它们也是c
,那么您应将所有内容用c
求和,因为它们不会在->
之后出现)
其他示例:
np.einsum('abab->ab', A)
# Same as (by logic, not by actual code)
res = np.empty((max_a, max_b), dtype=A.dtype)
for a in range(max_a):
for b in range(max_b):
res[a, b] = A[a, b, a, b]
return res
np.einsum('abba->ab', A)
# Same as (by logic, not by actual code)
res = np.empty((max_a, max_b), dtype=A.dtype)
for a in range(max_a):
for b in range(max_b):
res[a, b] = A[a, b, b, a]
return res
np.einsum('abcb->abc', A)
# Same as (by logic, not by actual code)
res = np.empty((max_a, max_b, max_c), dtype=A.dtype)
for a in range(max_a):
for b in range(max_b):
for c in range(max_c):
res[a, b, c] = A[a, b, c, b]
return res
np.einsum('abbc->abc', A)
# Same as (by logic, not by actual code)
res = np.empty((max_a, max_b, max_c), dtype=A.dtype)
for a in range(max_a):
for b in range(max_b):
for c in range(max_c):
res[a, b, c] = A[a, b, b, c]
return res
一些代码来检查它是否真实:
import numpy as np
max_a = 2
max_b = 3
max_c = 5
shape_1 = (max_a, max_b, max_c, max_b)
A = np.arange(1, np.prod(shape_1) + 1).reshape(shape_1)
print(A)
print()
print(np.einsum('abcb->abc', A))
print()
res = np.empty((max_a, max_b, max_c), dtype=A.dtype)
for a in range(max_a):
for b in range(max_b):
for c in range(max_c):
res[a, b, c] = A[a, b, c, b]
print(res)
print()