如何使用共享内存在cuda中转置巨大的任意矩阵?

时间:2019-05-17 18:43:52

标签: c++ matrix cuda transpose

我的任务是使用共享内存在CUDA中转置矩阵,而不会发生存储体冲突。限制为:*高度<= 10 ^ 8。关键测试大小为:1x10 ^ 8、10 ^ 4x10 ^ 4、10 ^ 8 * 1。

我尝试了Matrix Transpose (with shared Memory) with arbitary size on Cuda C此处提供的解决方案,但对我没有帮助,因为我的矩阵太大,超出了CUDA尺寸限制(65536块和每个块32个线程)。

我试图创建一个循环,该循环有助于处理巨大的矩阵:

const int BLOCK_DIM = 32;
__global__ void transposeMatrixFast(double* inputMatrix, double* outputMatrix, int width, int height)
{
    __shared__ double temp[BLOCK_DIM][BLOCK_DIM+1];

    int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
    int yIndex = blockIdx.y * blockDim.y + threadIdx.y;
    int offsetx = gridDim.x * blockDim.x;
    int offsety = gridDim.y * blockDim.y;

    for (int y = yIndex; y < height; y += offsety)
    {
        for (int x = xIndex; x < width; x += offsetx)
        {
            if ((xIndex < width) && (yIndex < height))
            {
                int idx = y * width + x;

                temp[threadIdx.y][threadIdx.x] = inputMatrix[idx];
            }

            __syncthreads();


            if ((x < width) && (y < height))
            {
                int idx = x * height + y;

                outputMatrix[idx] = temp[threadIdx.y][threadIdx.x];

            }
        }
    }
}

现在,我在测试服务器上收到“超过时间限制”错误。原因是我不能在此行中使用共享内存的好处: outputMatrix[idx] = temp[threadIdx.x][threadIdx.y];,我的kerner放慢了脚步。我认为还有另一种组织循环的方法,但是我不知道如何。

1 个答案:

答案 0 :(得分:0)

我找到了另一种组织循环的方法,现在我可以转置任何大小的矩阵了:

const int BLOCK_SIZE = 32;
__global__ void matrixTransposeSolveBankConflicts(const double *d_a, double *d_b, const unsigned long rows, const unsigned long cols) {

    __shared__ double mat[BLOCK_SIZE][BLOCK_SIZE + 1];

    unsigned long bh = ceil((double)rows / BLOCK_SIZE);
    unsigned long bw = ceil((double)cols / BLOCK_SIZE);

    for (unsigned long blocky = blockIdx.y; blocky < bh; blocky += gridDim.y) {
        for (unsigned long blockx = blockIdx.x; blockx < bw; blockx += gridDim.x) {
            unsigned long bx = blockx * BLOCK_SIZE;
            unsigned long by = blocky * BLOCK_SIZE;

            unsigned long i = by + threadIdx.y;
            unsigned long j = bx + threadIdx.x;

            if (i < rows && j < cols)
            {
                mat[threadIdx.x][threadIdx.y] = d_a[i*cols + j];
            }

            __syncthreads();

            unsigned long ti = bx + threadIdx.y;
            unsigned long tj = by + threadIdx.x;

            if (tj < rows && ti < cols)
            {
                d_b[ti*rows + tj] = mat[threadIdx.y][threadIdx.x];
            }

            __syncthreads();
        }
    }
}