我正在生成一维卷积,但是我的数据输入形状有些麻烦。我看了一些帖子,似乎错误是数据必须是3D,但我的数据已经是3D。
# shape
# x_train shape: (1228, 1452, 20)
# y_train shape: (1228, 1452, 8)
# x_val shape: (223, 680, 20)
# x_val shape: (223, 680, 8)
###
n_outputs = 8
n_timesteps = 1452
n_features = 20
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(x_train.shape[1:]))) # ie 1452, 20
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(Dropout(0.5))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(n_outputs, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=9,
batch_size=64,
shuffle=True)
但是我继续收到此错误消息:
ValueError: A target array with shape (1228, 1452, 8) was passed for an output of shape (None, 8) while using as loss `categorical_crossentropy`. This loss expects targets to have the same shape as the output.
我从中收集到的是3维目标形状与2维输出不同,因此无法计算出损失,但我只需要找到一种方法来重塑形状即可等于。
编辑
model.summary()
如下所示
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d (Conv1D) (None, 1450, 64) 3904
_________________________________________________________________
conv1d_1 (Conv1D) (None, 1448, 64) 12352
_________________________________________________________________
dropout (Dropout) (None, 1448, 64) 0
_________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 724, 64) 0
_________________________________________________________________
flatten (Flatten) (None, 46336) 0
_________________________________________________________________
dense (Dense) (None, 100) 4633700
_________________________________________________________________
dense_1 (Dense) (None, 8) 808
=================================================================
Total params: 4,650,764
Traceback (most recent call last):
Trainable params: 4,650,764
Non-trainable params: 0
答案 0 :(得分:1)
在我的案例中,问题在于目标向量是3D,而输出向量是2D,因此存在明显的不匹配。要解决此问题,请将y_train
的形状更改为(batch, 8)
或使用return_sequences=True
从上一个LSTM层返回相同的形状。