我无法运行均值函数。这是我的代码:
我已经成功尝试了factor(data $ date)函数。外壳程序回答说它由890个51级条目组成。
data <- read.table("R/DATA.csv", sep = ";", header = TRUE, dec = ",")
View(data)
colnames(data)[1] <- "Date"
eau <- data$"Tension"
eaucalculee <- ( 0.000616 * eau - 0.1671) * 100
data["Eau"] <- eaucalculee
tata <- data.frame("Aucun","Augmentation","Interception")
tata[1,1]<-mean(data$Eau[data$Date == levels(factor(data$Date))[1]&
data$Traitement == "Aucun"])
我希望在 tata 数据帧的第一列第一行中填充均值,但实际上我收到了此错误消息:
In `[<-.factor`(`*tmp*`, iseq, value = 8.6692) :
invalid factor level, NA generated
能帮我吗?
您可能会在其中找到csv文件:https://drive.google.com/file/d/1zbA25vajouQ4MiUF72hbeV8qP9wlMqB9/view?usp=sharing
非常感谢您
答案 0 :(得分:0)
tata是一个因子data.frame,您想在其中插入一个数字 尝试
tata <- data.frame("Aucun","Augmentation","Interception" ,stringsAsFactors = F)
答案 1 :(得分:0)
我不确定tata <- data.frame("Aucun","Augmentation","Interception")
行是否符合您的期望。如果使用View(tata)
检查其结果,您将看到一个数据框,其中包含一条记录和3列,其值是您的3个字符串(转换为因数,如@ s-brunel所述)。列名是根据其值(X.Aucun.
等)推断出来的。我猜您是想创建一个数据框,其列名是给定的字符串。
建议的代码,带注释
data <- read.table("R/DATA.csv", sep = ";", header = TRUE, dec = ",")
# The following is useless since first column is already named Date
# colnames(data)[1] <- "Date"
# No need to create your intermediate variables eau and eaucalculee: you can
# do it directly with the data frame columns
data$Eau <- ( 0.000616 * data$Tension - 0.1671) * 100
# No need to create your tata data frame before filling its actual content, you
# can do it directly
tata <- data.frame(
Aucun = mean(data$Eau[
data$Date == levels(factor(data$Date))[1] & data$Traitement == "Aucun"
])
)
tata$Augmentation = your_formula_here
tata$Interception = your_formula_here
注释1 :引用数据框列的最简单方法是使用$
,并且不需要使用任何双引号。您还可以将[[
与双引号(等效)一起使用,但要注意[
,它会返回带有单列的数据帧:
class(data$Date)
# [1] "factor"
class(data[["Date"]])
# [1] "factor"
class(data["Date"])
# [1] "data.frame"
class(data[ , "Date"])
# [1] "factor"
注释2 :尝试对您提出的问题进行反向工程,也许您想为Date和Traitement的每种组合计算Eau的平均值。在这种情况下,我建议您使用dplyr
令人敬畏的一组软件包中的tidyr
和tidyverse
:
# install.packages("tidyverse") # if you don't already have it
library(tidyverse)
data <- data %>%
mutate(Eau = ( 0.000616 * data$Tension - 0.1671) * 100)
tata_vertical <- data %>%
group_by(Date, Traitement) %>%
summarise(mean_eau = mean(eau))
View(tata_vertical)
tata <- tata_vertical %>% spread(Traitement, mean_eau)
View(tata)