我有一个具有45个属性的数据。首先输入44,输出属性45。所有数据类型均为双精度。在进行深度学习之前,我将所有数据标准化。
options = trainingOptions('sgdm', ...
'MaxEpochs',400, ...
'Verbose',true, ...
'Plots','training-progress');
%trainingDataMale = [XMaleTraining, YMaleTraining];
load swls_deepnetwork_V2;
trainedNetMale = trainNetwork(XMaleTraining, YMaleTraining,swls_deepnetwork_V2,options);
save('trainedNetMale.mat');
给出此介绍并演示如何调用trainnetwork函数,让我描述我的问题。我的深度学习网络设计(在MathWorks中推荐用于序列输入和回归输出的设计)并由我使用matlab的深度学习网络设计器应用程序创建,提供了以下结果。
Training on single CPU. |========================================================================================| | Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning | | | | (hh:mm:ss) | RMSE | Loss | Rate | |========================================================================================| | 1 | 1 | 00:00:01 | 0.59 | 0.2 | 0.0100 | | 50 | 50 | 00:00:04 | NaN | NaN | 0.0100 | | 100 | 100 | 00:00:07 | NaN | NaN | 0.0100 | | 150 | 150 | 00:00:10 | NaN | NaN | 0.0100 | | 200 | 200 | 00:00:13 | NaN | NaN | 0.0100 | | 250 | 250 | 00:00:16 | NaN | NaN | 0.0100 | | 300 | 300 | 00:00:19 | NaN | NaN | 0.0100 | | 350 | 350 | 00:00:23 | NaN | NaN | 0.0100 | | 400 | 400 | 00:00:26 | NaN | NaN | 0.0100 | |========================================================================================|
训练时间需要几秒钟。在此之前,我在基于矩阵计算的多层次深度学习网络设计中使用了相同的数据,当时培训需要几天的时间。我在哪里做错了?我尝试了不同的纪元数字和不同的选项。这是我第一次使用matlab深度学习功能,并且我认为自己犯了一些基本错误。任何帮助将不胜感激。 提前致谢, FerdaÖzdemirSönmez