我有一个用例,我的KTable就是这样。
KTable :orderTable
键:值
{123} : {id1,12}
{124} : {id2,10}
{125} : {id1,5}
{126} : {id2,11}
KTable :orderByIdTable
=>
该表位于groupBy值field
(id)
上,并且计数列值的总和为{{1 }},id1=(12+5)
键:值
id2=(10+11)
{id1} : {17}
{id2} : {21}
答案 0 :(得分:2)
这里是一个代码示例(仅使用Java原语类型,这使我更快地组合起来),演示了如何对KTable进行密钥重新命名(即重新分区),从而生成新的KTable。您应该能够轻松地将其适应于将KTable<String, Order>
变成KTable<String, Long>
的示例。
我个人会为您的用例选择Variant 2。
以下示例。 未经充分测试,可能是逻辑删除记录(具有非空键但值为空值的消息,表示应从表中删除该键)未得到正确处理。
final StreamsBuilder builder = new StreamsBuilder();
final KTable<Integer, String> table = builder.table(inputTopic, Consumed.with(Serdes.Integer(), Serdes.String()));
// Variant 1 (https://docs.confluent.io/current/streams/faq.html#option-1-write-kstream-to-ak-read-back-as-ktable)
// Here, we re-key the KTable, write the results to a new topic, and then re-read that topic into a new KTable.
table
.toStream()
.map((key, value) -> KeyValue.pair(value, key))
.to(outputTopic1, Produced.with(Serdes.String(), Serdes.Integer()));
KTable<String, Integer> rekeyedTable1 =
builder.table(outputTopic1, Consumed.with(Serdes.String(), Serdes.Integer()));
// Variant 2 (https://docs.confluent.io/current/streams/faq.html#option-2-perform-a-dummy-aggregation)
// Here, we re-key the KTable (resulting in a KGroupedTable), and then perform a dummy aggregation to turn the
// KGroupedTable into a KTable.
final KTable<String, Integer> rekeyedTable2 =
table
.groupBy(
(key, value) -> KeyValue.pair(value, key),
Grouped.with(Serdes.String(), Serdes.Integer())
)
// Dummy aggregation
.reduce(
(aggValue, newValue) -> newValue, /* adder */
(aggValue, oldValue) -> oldValue /* subtractor */
);
rekeyedTable2.toStream().to(outputTopic2, Produced.with(Serdes.String(), Serdes.Integer()));