model.matrix()与na.action = NULL?

时间:2011-04-11 02:24:46

标签: r matrix na

我有一个公式和一个数据框,我想提取model.matrix()。但是,我需要生成的矩阵包含在原始数据集中找到的NA。如果我使用model.frame()来执行此操作,我只需将其传递给na.action=NULL。但是,我需要的输出是model.matrix()格式。具体来说,我只需要右侧变量,我需要输出为矩阵(不是数据帧),我需要将因子转换为一系列虚拟变量。

我确信我可以使用循环或其他东西一起破解某些东西,但我想知道是否有人可以建议更清洁,更有效的解决方法。非常感谢你的时间!

这是一个例子:

dat <- data.frame(matrix(rnorm(20),5,4), gl(5,2))
dat[3,5] <- NA
names(dat) <- c(letters[1:4], 'fact')
ff <- a ~ b + fact

# This omits the row with a missing observation on the factor
model.matrix(ff, dat) 

# This keeps the NA, but it gives me a data frame and does not dichotomize the factor
model.frame(ff, dat, na.action=NULL) 

这是我想要获得的:

   (Intercept)          b fact2 fact3 fact4 fact5
1            1  0.7266086     0     0     0     0
2            1 -0.6088697     0     0     0     0
3            NA 0.4643360     NA    NA    NA    NA
4            1 -1.1666248     1     0     0     0
5            1 -0.7577394     0     1     0     0
6            1  0.7266086     0     1     0     0
7            1 -0.6088697     0     0     1     0
8            1  0.4643360     0     0     1     0
9            1 -1.1666248     0     0     0     1
10           1 -0.7577394     0     0     0     1

4 个答案:

答案 0 :(得分:43)

Joris的建议有效,但更快更清洁的方法是通过全球na.action设置。 “通过”选项实现了我们从原始数据集中保留NA的目标。

选项1:通过

结果矩阵将在与原始数据集对应的行中包含NA。

options(na.action='na.pass')
model.matrix(ff, dat) 

选项2:省略

结果矩阵将跳过包含NA的行。

options(na.action='na.omit')
model.matrix(ff, dat) 

选项3:失败

如果原始数据包含NA,则会发生错误。

options(na.action='na.fail')
model.matrix(ff, dat) 

当然,在更改全局选项时要小心,因为它们可能会改变代码其他部分的行为。谨慎的人可能会将原始设置存储为类似current.na.action <- options('na.action')的内容,然后在制作model.matrix后将其更改回来。

答案 1 :(得分:30)

另一种方法是使用带有参数model.frame的{​​{1}}函数作为na.action=na.pass的第二个参数:

model.matrix

> model.matrix(ff, model.frame(~ ., dat, na.action=na.pass)) (Intercept) b fact2 fact3 fact4 fact5 1 1 -1.3560754 0 0 0 0 2 1 2.5476965 0 0 0 0 3 1 0.4635628 NA NA NA NA 4 1 -0.2871379 1 0 0 0 5 1 2.2684958 0 1 0 0 6 1 -1.3560754 0 1 0 0 7 1 2.5476965 0 0 1 0 8 1 0.4635628 0 0 1 0 9 1 -0.2871379 0 0 0 1 10 1 2.2684958 0 0 0 1 可让您为调用model.frame时维护的na.action设置相应的操作。

答案 2 :(得分:16)

根据rownames:

,你可以使用model.matrix对象搞乱一点
MM <- model.matrix(ff,dat)
MM <- MM[match(rownames(dat),rownames(MM)),]
MM[,"b"] <- dat$b
rownames(MM) <- rownames(dat)

给出:

> MM
     (Intercept)         b fact2 fact3 fact4 fact5
1              1 0.9583010     0     0     0     0
2              1 0.3266986     0     0     0     0
3             NA 1.4992358    NA    NA    NA    NA
4              1 1.2867461     1     0     0     0
5              1 0.5024700     0     1     0     0
6              1 0.9583010     0     1     0     0
7              1 0.3266986     0     0     1     0
8              1 1.4992358     0     0     1     0
9              1 1.2867461     0     0     0     1
10             1 0.5024700     0     0     0     1

或者,您可以使用contrasts()为您完成工作。手工构建矩阵将是:

cont <- contrasts(dat$fact)[as.numeric(dat$fact),]
colnames(cont) <- paste("fact",colnames(cont),sep="")
out <- cbind(1,dat$b,cont)
out[is.na(dat$fact),1] <- NA
colnames(out)[1:2]<- c("Intercept","b")
rownames(out) <- rownames(dat)

给出:

> out
     Intercept          b fact2 fact3 fact4 fact5
1            1  0.2534288     0     0     0     0
2            1  0.2697760     0     0     0     0
3           NA -0.8236879    NA    NA    NA    NA
4            1 -0.6053445     1     0     0     0
5            1  0.4608907     0     1     0     0
6            1  0.2534288     0     1     0     0
7            1  0.2697760     0     0     1     0
8            1 -0.8236879     0     0     1     0
9            1 -0.6053445     0     0     0     1
10           1  0.4608907     0     0     0     1

在任何情况下,两种方法都可以合并到一个可以处理更复杂公式的函数中。我把这个练习留给了读者(当我在一篇论文中遇到它时,我对这句话感到厌恶;-))

答案 3 :(得分:8)

在查看mattdevlinNathan Gould的答案后,我偶然发现了一个更简单的解决方案:

 model.matrix.lm(ff, dat, na.action = "na.pass")

model.matrix.default可能不支持na.action参数,但model.matrix.lm会支持!

(我在Rstudio的自动完成建议中找到model.matrix.lm - 如果你没有加载任何添加其他库的库,它似乎是model.matrix唯一的非默认方法。然后我猜对了它可能支持na.action参数。)