我有一个关于餐厅哲学家计划的僵局的任务。我被要求制作一个名为“ sections1.c”的文件,该文件存在死锁问题,完成死锁后,我将复制代码并解决文件“ sections2.c”中的死锁情况。我的老师让我们通过MDAT进行编程。正如他在MDAT指南中向我们提供的那样,MDAT应该像信号量和pthread函数一样运行。
void mdat_mutex_init(const char *name, pthread_mutex_t *lock,
pthread_mutexattr_t *attr);
void mdat_mutex_lock(pthread_mutex_t *lp);
void mdat_mutex_unlock(pthread_mutex_t *lp);
void mdat_sem_init(const char *name, sem_t *sem, int pshared, int value);
void mdat_sem_wait(sem_t *sp);
void mdat_sem_post(sem_t *sp);
MDAT应该由调度程序负责,并通过播种当前运行时间来随机调度胎面。
在不允许编辑的主文件中,函数sectionInitGlobals运行一次,sectionRunPhilosopher随每个pthread_create运行一次。
一个问题可能是我以前从未使用过信号灯,并且使用不正确。
// sections1.c: mutual exclusion model sections
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include "sections.h"
#include "mdat.h"
// TODO: Declare shared variables here
int numPhils;
sem_t * sem_arr;
void sectionInitGlobals(int numPhilosophers)
{
// TODO: Complete this function
int i;
char char_arr[50];
sem_t arr[numPhilosophers];
numPhils = numPhilosophers;
for(i = 0; i < numPhilosophers; i++)
{
sprintf(char_arr,"%d", i);
mdat_sem_init(char_arr, &arr[i], 0, 0);
}
sem_arr = arr;
}
void sectionRunPhilosopher(int philosopherID, int numRounds)
{
int lChopstick = philosopherID;
int rChopstick;
int left;
int right;
int i;
int hasEaten;
int hasLeft;
int hasRight;
if(philosopherID == 0)
rChopstick = numPhils - 1;
else
rChopstick = philosopherID - 1;
for(i = 0; i < numRounds; i++)
{
hasEaten = 0;
hasLeft = 0;
hasRight = 0;
while(hasEaten == 0)
{
sem_getvalue(&sem_arr[lChopstick], &left);
if(left >= 0 || hasLeft == 1)
{
hasLeft = 1;
}
else
{
mdat_sem_wait(&sem_arr[lChopstick]);
}
sem_getvalue(&sem_arr[rChopstick], &right);
if(right >= 0 && hasLeft != 0)
{
hasRight = 1;
}
else
{
mdat_sem_wait(&sem_arr[rChopstick]);
}
if(hasLeft != 0 && hasRight != 0)
{
eat();
hasEaten = 1;
mdat_sem_post(&sem_arr[lChopstick]);
mdat_sem_post(&sem_arr[rChopstick]);
}
}
think();
}
}
在测试我的代码时,我可以在任意数量的线程和回合中运行它,但是,似乎可以保证使用更多线程可以确保死锁。当我运行具有100个线程的代码时,每次都会到达一个死锁,但是拥有更多线程时,它难道没有更少的机会陷入死锁吗?
结果:
具有16个线程和10个回合的死锁有时取决于调度程序。
具有6个线程和5个回合,死锁的发生率为0%。
具有100个线程和5个回合,死锁会在100%的时间内发生。
编辑:
当没有死锁发生并且程序认为死锁发生时跟踪文件的结尾:
无死锁:
THREAD: 3
SECTION: DoneRounds
MESSAGE: Thread 3 has completed
*******************************************************************************
|ID |PROPERTY |LOC |SECTION |STATUS |WAITING ON |
|0 |0 |19 | |completed | |
|1 |1 |19 | |completed | |
|2 |2 |19 | |completed | |
|3 |3 |19 | |completed | |
|4 |4 |19 | |completed | |
|5 |5 |19 | |completed | |
|6 |6 |19 | |completed | |
|7 |7 |19 | |completed | |
|8 |8 |19 | |completed | |
|9 |9 |19 | |completed | |
|10 |10 |19 | |completed | |
|11 |11 |19 | |completed | |
|12 |12 |19 | |completed | |
|13 |13 |19 | |completed | |
|14 |14 |19 | |completed | |
|15 |15 |19 | |completed | |
-------------------------------------------------------------------------------
|LOCK NAME |STATUS |WAITING THREADS |
|lock_a |unlocked | |
|lock_b |unlocked | |
-------------------------------------------------------------------------------
|SEMAPHORE NAME |VALUE |WAITING THREADS |
|0 |20 | |
|1 |20 | |
|2 |20 | |
|3 |20 | |
|4 |20 | |
|5 |20 | |
|6 |20 | |
|7 |20 | |
|8 |20 | |
|9 |20 | |
|10 |20 | |
|11 |20 | |
|12 |20 | |
|13 |20 | |
|14 |20 | |
|15 |20 | |
*******************************************************************************
***** Program Trace End *****
死锁:
THREAD: 13
SECTION: DoneRounds
MESSAGE: Thread 13 has completed
*******************************************************************************
|ID |PROPERTY |LOC |SECTION |STATUS |WAITING ON |
|0 |0 |19 | |completed | |
|1 |1 |32 | |waiting-sem |1 |
|2 |2 |32 | |waiting-sem |2 |
|3 |3 |38 | |waiting-sem |2 |
|4 |4 |19 | |completed | |
|5 |5 |19 | |completed | |
|6 |6 |19 | |completed | |
|7 |7 |19 | |completed | |
|8 |8 |19 | |completed | |
|9 |9 |32 | |waiting-sem |9 |
|10 |10 |38 | |waiting-sem |9 |
|11 |11 |19 | |completed | |
|12 |12 |19 | |completed | |
|13 |13 |19 | |completed | |
|14 |14 |19 | |completed | |
|15 |15 |19 | |completed | |
-------------------------------------------------------------------------------
|LOCK NAME |STATUS |WAITING THREADS |
|lock_a |unlocked | |
|lock_b |unlocked | |
-------------------------------------------------------------------------------
|SEMAPHORE NAME |VALUE |WAITING THREADS |
|0 |10 | |
|1 |-1 |1 |
|2 |-2 |2 3 |
|3 |10 | |
|4 |20 | |
|5 |20 | |
|6 |20 | |
|7 |20 | |
|8 |10 | |
|9 |-2 |9 10 |
|10 |10 | |
|11 |20 | |
|12 |20 | |
|13 |20 | |
|14 |20 | |
|15 |20 | |
*******************************************************************************
ERROR! VIOLATION: No ready threads to schedule - possible DEADLOCK
***** Program Trace End *****
感谢梅维斯! 最终代码: section1.c-想要死锁
// sections1.c: mutual exclusion model sections
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include "sections.h"
#include "mdat.h"
// TODO: Declare shared variables here
int numPhils;
sem_t * sem_arr;
void sectionInitGlobals(int numPhilosophers)
{
// TODO: Complete this function
int i;
char char_arr[50];
sem_t arr[numPhilosophers];
numPhils = numPhilosophers;
for(i = 0; i < numPhilosophers; i++)
{
sprintf(char_arr,"%d", i);
mdat_sem_init(char_arr, &arr[i], 0, 1);
}
sem_arr = arr;
}
void sectionRunPhilosopher(int philosopherID, int numRounds)
{
int lChop = philosopherID;
int rChop;
int i;
if(philosopherID == 0)
rChop = numPhils - 1;
else
rChop = philosopherID - 1;
for(i = 0; i < numRounds; i++)
{
mdat_sem_wait(&sem_arr[lChop]);
mdat_sem_wait(&sem_arr[rChop]);
eat();
mdat_sem_post(&sem_arr[rChop]);
mdat_sem_post(&sem_arr[lChop]);
think();
}
}
section2.c-不需要死锁
// sections1.c: mutual exclusion model sections
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include "sections.h"
#include "mdat.h"
// TODO: Declare shared variables here
int numPhils;
sem_t * sem_arr;
void sectionInitGlobals(int numPhilosophers)
{
// TODO: Complete this function
int i;
char char_arr[50];
sem_t arr[numPhilosophers];
numPhils = numPhilosophers;
for(i = 0; i < numPhilosophers; i++)
{
sprintf(char_arr,"%d", i);
mdat_sem_init(char_arr, &arr[i], 0, 1);
}
sem_arr = arr;
}
void sectionRunPhilosopher(int philosopherID, int numRounds)
{
int lChop = philosopherID;
int rChop;
int i;
if(philosopherID == 0)
rChop = numPhils - 1;
else
rChop = philosopherID - 1;
for(i = 0; i < numRounds; i++)
{
if(philosopherID != numPhils - 1)
{
mdat_sem_wait(&sem_arr[lChop]);
mdat_sem_wait(&sem_arr[rChop]);
eat();
mdat_sem_post(&sem_arr[rChop]);
mdat_sem_post(&sem_arr[lChop]);
}
else
{
mdat_sem_wait(&sem_arr[rChop]);
mdat_sem_wait(&sem_arr[lChop]);
eat();
mdat_sem_post(&sem_arr[lChop]);
mdat_sem_post(&sem_arr[rChop]);
}
think();
}
}
答案 0 :(得分:1)
经典的餐饮哲学家问题有N个哲学家和N个叉子;但每个人需要2叉子吃。给定的分叉信号量的最大值可能为1(可用),最小值为-1(一个拥有分叉,一个正在等待分叉)。您的叉子的值是10和20?
按照您的逻辑,检查信号量的值,如果> = 0,则表示您“拥有”,然后继续检查另一个信号量;但是你没有。在您等待 之前,您没有信号灯。 eat()ing之后,即使您可能从未等待过它们中的任何一个,也可以将它们都张贴到它们上。这就是为什么信号量的值如此之高的原因。
第二,在返回 sem_get_value 时,信号量的值可能已更改。这是一个常见的同步问题,因此很常见,它的名称为:TOCTOU(检查时间到使用时间)。您需要使用一种机制,您可以根据行动做出决定,而不仅仅是检查状态。
第三,您将其更改为有效地循环放置:
sem_wait(left);
sem_wait(right);
eat();
sem_post(right);
sem_post(left);
您将遇到一个完全不同的同步问题,这就是餐饮哲学家打算说明的问题。狩猎愉快!