我正在做一个文本识别项目。文本可能会旋转180度。我已经在终端上尝试过tesseract-ocr,但是没有运气。有什么方法可以检测到并纠正它?文本示例如下所示。
tesseract input.png output
答案 0 :(得分:2)
一种简单的检测文本是否旋转180度的方法是使用观察到的趋势,即文本倾向于向底部倾斜。这是策略:
阈值图像
查找上半部分和下半部分的投资回报率
接下来,我们分割顶部/底部部分
对于每一半,我们使用cv2.countNonZero()
计算非零数组元素。我们得到了
('top', 4035)
('bottom', 3389)
通过比较两个半部分的值,如果上半部分的像素多于下半部分的像素,则上下颠倒180度。 如果上半部分的像素少,则正确
现在我们已经检测到它是否颠倒了,我们可以使用此功能旋转它
def rotate(image, angle):
# Obtain the dimensions of the image
(height, width) = image.shape[:2]
(cX, cY) = (width / 2, height / 2)
# Grab the rotation components of the matrix
matrix = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(matrix[0, 0])
sin = np.abs(matrix[0, 1])
# Find the new bounding dimensions of the image
new_width = int((height * sin) + (width * cos))
new_height = int((height * cos) + (width * sin))
# Adjust the rotation matrix to take into account translation
matrix[0, 2] += (new_width / 2) - cX
matrix[1, 2] += (new_height / 2) - cY
# Perform the actual rotation and return the image
return cv2.warpAffine(image, matrix, (new_width, new_height))
旋转图像
rotated = rotate(original_image, 180)
cv2.imshow("rotated", rotated)
这给我们正确的结果
如果图像方向正确,这是像素结果
('top', 3209)
('bottom', 4206)
完整代码
import numpy as np
import cv2
def rotate(image, angle):
# Obtain the dimensions of the image
(height, width) = image.shape[:2]
(cX, cY) = (width / 2, height / 2)
# Grab the rotation components of the matrix
matrix = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(matrix[0, 0])
sin = np.abs(matrix[0, 1])
# Find the new bounding dimensions of the image
new_width = int((height * sin) + (width * cos))
new_height = int((height * cos) + (width * sin))
# Adjust the rotation matrix to take into account translation
matrix[0, 2] += (new_width / 2) - cX
matrix[1, 2] += (new_height / 2) - cY
# Perform the actual rotation and return the image
return cv2.warpAffine(image, matrix, (new_width, new_height))
image = cv2.imread("1.PNG")
original_image = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.threshold(blurred, 110, 255, cv2.THRESH_BINARY_INV)[1]
cv2.imshow("thresh", thresh)
x, y, w, h = 0, 0, image.shape[1], image.shape[0]
top_half = ((x,y), (x+w, y+h/2))
bottom_half = ((x,y+h/2), (x+w, y+h))
top_x1,top_y1 = top_half[0]
top_x2,top_y2 = top_half[1]
bottom_x1,bottom_y1 = bottom_half[0]
bottom_x2,bottom_y2 = bottom_half[1]
# Split into top/bottom ROIs
top_image = thresh[top_y1:top_y2, top_x1:top_x2]
bottom_image = thresh[bottom_y1:bottom_y2, bottom_x1:bottom_x2]
cv2.imshow("top_image", top_image)
cv2.imshow("bottom_image", bottom_image)
# Count non-zero array elements
top_pixels = cv2.countNonZero(top_image)
bottom_pixels = cv2.countNonZero(bottom_image)
print('top', top_pixels)
print('bottom', bottom_pixels)
# Rotate if upside down
if top_pixels > bottom_pixels:
rotated = rotate(original_image, 180)
cv2.imshow("rotated", rotated)
cv2.waitKey(0)
答案 1 :(得分:1)
tesseract input.png---psm 0 -c min_characters_to_try = 10
Warning. Invalid resolution 0 dpi. Using 70 instead.
Page number: 0
Orientation in degrees: 180
Rotate: 180
Orientation confidence: 0.74
Script: Latin
Script confidence: 1.67