numpy python快速有效地将非零值提高到二维数组顶部

时间:2019-05-14 16:55:36

标签: python arrays numpy

对不起,标题,如果有人有更好的描述,我会寻求建议。我想要一个函数(尽快)以获取非零条目,并使用先前数组的有序版本填充新数组。从下面的示例中可能会更清楚:

输入数组

np.random.seed(2)
a = np.random.randint(0,10,10)
b = np.random.randint(0,10,10)
c = np.random.randint(0,10,10)
a = 0 * (a % 2) + (1-(a % 2))*a
b = 0 * (b % 2) + (1-(b % 2))*b
c = 0 * (c % 2) + (1-(c % 2))*c
arr = np.array([a,b,c])

arr
>>> array([[8, 8, 6, 2, 8, 0, 2, 0, 0, 4],
           [4, 0, 0, 0, 6, 4, 0, 0, 6, 0],
           [0, 0, 8, 4, 6, 0, 0, 2, 0, 4]])

输出数组

outArr = np.empty_like(arr)
outArr[0,:] = (arr[0,:] > 0) * arr[0,:] + ~(arr[0,:] > 0) * (arr[1,:] > 0) * arr[1,:] + ~(arr[0,:] > 0) * ~(arr[1,:] > 0) * arr[2,:]
outArr[1,:] = (arr[0,:] > 0) * arr[1,:] + (arr[0,:] > 0) * ~(arr[1,:] > 0) * arr[2,:]
outArr[2,:] = (arr[0,:] > 0) * (arr[1,:] > 0) * arr[2,:]

outArr
>>> array([[8, 8, 6, 2, 8, 4, 2, 2, 6, 4],
           [4, 0, 8, 4, 6, 0, 0, 0, 0, 4],
           [0, 0, 0, 0, 6, 0, 0, 0, 0, 0]])

在我将该数组硬编码为3行的情况下,以便我可以手动键入该函数,实际上,这可能是更多行(大约数十行,这太疯狂了)。

编辑:

我实际上想使用的尺寸是5ish行乘100-150k列

数据类型将始终为整数

最后,更新过程是我在底部添加新行,向上对齐,然后删除仅0(空值)的所有尾随行

1 个答案:

答案 0 :(得分:2)

方法1

justify的启发,以下是对up-justification的微调,并且在排序可能会使速度变慢的情况下,因此建议使用broadcasted-mask-creation的另一种选择-

def justify_up(a, invalid_val=0, use_sort=True):
    if invalid_val is np.nan:
        mask = ~np.isnan(a)
    else:
        mask = a!=invalid_val

    if use_sort==1:
        justified_mask = np.sort(mask,axis=0)[::-1]
    else:
        justified_mask = (mask.sum(0) > np.arange(a.shape[0])[:,None])

    if invalid_val is 0:
        out = np.zeros_like(a)
    elif invalid_val is 1:
        out = np.ones_like(a)
    else:
        out = np.full(a.shape, invalid_val)

    out.T[justified_mask.T] = a.T[mask.T]
    return out

样品运行-

In [199]: arr
Out[199]: 
array([[8, 8, 6, 2, 8, 0, 2, 0, 0, 4],
       [4, 0, 0, 0, 6, 4, 0, 0, 6, 0],
       [0, 0, 8, 4, 6, 0, 0, 2, 0, 4]])

In [200]: justify_up(arr, invalid_val=0)
Out[200]: 
array([[8, 8, 6, 2, 8, 4, 2, 2, 6, 4],
       [4, 0, 8, 4, 6, 0, 0, 0, 0, 4],
       [0, 0, 0, 0, 6, 0, 0, 0, 0, 0]])

方法2

我们还可以将带有循环的工作转移到numba,以提高in-situ编辑的性能-

from numba import njit

@njit
def justify_up_numba(a, invalid_val=0):
    # invalid_val : Any number but NaN
    m,n = a.shape
    for j in range(m-1):
        for i in range(0,m-j-1):
            for k in range(n):
                if a[i,k]==invalid_val:
                    a[i,k] = a[i+1,k]
                    a[i+1,k] = invalid_val      
    return a

大型阵列上的计时-

In [361]: np.random.seed(0)
     ...: arr = np.random.randint(0,5,(10,100000))

In [362]: %timeit justify_up(arr, invalid_val=0, use_sort=False)
100 loops, best of 3: 10.9 ms per loop

In [363]: %timeit justify_up(arr, invalid_val=0, use_sort=True)
100 loops, best of 3: 15.9 ms per loop

In [364]: %timeit justify_up_numba(arr, invalid_val=0)
100 loops, best of 3: 2.38 ms per loop