不确定之前是否确实有人问过这个问题,但是我对许多不同的模型进行了一系列系数测试:
coeftest(arima(detrend, order = c(0,0,2))) #MA2
coeftest(arima(detrend, order = c(0,0,3))) #MA3
coeftest(arima(detrend, order = c(0,0,4))) #MA4
coeftest(arima(detrend, order = c(1,0,0))) #AR1
coeftest(arima(detrend, order = c(2,0,0))) #AR2
coeftest(arima(detrend, order = c(1,0,1))) #ARMA(1,1)
coeftest(arima(detrend, order = c(2,0,1))) #ARMA(2,1)
coeftest(arima(detrend, order = c(2,0,1))) #ARMA(1,2)
如果我将这些测试存储在对象中,并将所得的时间序列估计值与p值一起存储,该如何创建一个可以在其中具有模型/对象名称的表格?像这样:
Model AR Terms MA Terms P-value
MA1 NA 1 0.006
AR2 1 NA 0.0042
2 NA 0.0020
ARMA11 1 0 0.0031
0 1 0.0005
任何arima模型都可以作为样本,因此我将提供以下ar2流程:
phi.1 <- 1.2
phi.2 <- -0.6
sigma.e <- 9
Y <- rnorm(2, 0, sigma.e)
n <- 200
for(t in 3:(n+2)){
new <- phi.1*(Y[t-1]) + phi.2*(Y[t-2]) + rnorm(1, 0, sigma.e)
Y <- c(Y, new)
}
ar2 <- as.ts(Y)
答案 0 :(得分:0)
您能否进一步说明所需的输出?这些模型具有多个AR项和多个MA项,从而产生许多P值。
更新:像这样吗?
library(tidyverse)
test <- list(
"MA2" = coeftest(arima(ar2 , order = c(0,0,2))),
"MA3" = coeftest(arima(ar2 , order = c(0,0,3))),
"MA4" = coeftest(arima(ar2 , order = c(0,0,4))),
"AR1" = coeftest(arima(ar2 , order = c(1,0,0))),
"AR2" = coeftest(arima(ar2 , order = c(2,0,0))),
"ARMA(1,1)" = coeftest(arima(ar2 , order = c(1,0,1))),
"ARMA(2,1)" = coeftest(arima(ar2 , order = c(2,0,1))),
"ARMA(1,2)" = coeftest(arima(ar2 , order = c(2,0,1))))
map_df(test, tidy, .id = "model") %>%
select(-std.error, -statistic) %>%
complete(model, term, fill = list(NA)) %>%
nest(estimate, p.value, .key = 'stats') %>%
spread(key = term, value = stats) %>%
unnest(.sep = '_') -> res
# A tibble: 8 x 15
model ar1_estimate ar1_p.value ar2_estimate ar2_p.value intercept_estim~
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AR1 0.750 8.92e- 60 NA NA 1.04
2 AR2 1.29 1.54e-152 -0.714 2.28e-48 1.00
3 ARMA~ 0.625 1.03e- 26 NA NA 1.05
4 ARMA~ 1.30 5.92e- 77 -0.722 3.33e-32 1.00
5 ARMA~ 1.30 5.92e- 77 -0.722 3.33e-32 1.00
6 MA2 NA NA NA NA 0.982
7 MA3 NA NA NA NA 1.00
8 MA4 NA NA NA NA 1.07
# ... with 9 more variables: intercept_p.value <dbl>, ma1_estimate <dbl>,
# ma1_p.value <dbl>, ma2_estimate <dbl>, ma2_p.value <dbl>, ma3_estimate <dbl>,
# ma3_p.value <dbl>, ma4_estimate <dbl>, ma4_p.value <dbl>
您想从这里去哪里?