我有一个看起来像这样的pandas DataFrame:
| Id | Filter 1 | Filter 2 | Filter 3 |
|----|----------|----------|----------|
| 25 | 0 | 1 | 1 |
| 25 | 1 | 0 | 1 |
| 25 | 0 | 0 | 1 |
| 30 | 1 | 0 | 1 |
| 31 | 1 | 0 | 1 |
| 31 | 0 | 1 | 0 |
| 31 | 0 | 0 | 1 |
我需要转置该表,在“名称”列中添加过滤器的名称并汇总“过滤器”列的值。结果表应如下所示:
| Id | Name | Summ |
| 25 | Filter 1 | 1 |
| 25 | Filter 2 | 1 |
| 25 | Filter 3 | 3 |
| 30 | Filter 1 | 1 |
| 30 | Filter 2 | 0 |
| 30 | Filter 3 | 1 |
| 31 | Filter 1 | 1 |
| 31 | Filter 2 | 1 |
| 31 | Filter 3 | 2 |
到目前为止,我唯一的解决方案是对ID列分组使用apply函数,但是这种方法对于我的情况来说太慢了-数据集可能超过40列和50_000行,我该如何使用pandas做到这一点本机方法?(例如,Pivot,Transpose,Groupby)
答案 0 :(得分:2)
使用:
df_new=df.melt('Id',var_name='Name',value_name='Sum').groupby(['Id','Name']).Sum.sum()\
.reset_index()
print(df_new)
Id Name Sum
0 25 Filter 1 1
1 25 Filter 2 1
2 25 Filter 3 3
3 30 Filter 1 1
4 30 Filter 2 0
5 30 Filter 3 1
6 31 Filter 1 1
7 31 Filter 2 1
8 31 Filter 3 1
答案 1 :(得分:1)
stack
然后groupby
df.set_index('Id').stack().groupby(level=[0,1]).sum().reset_index()
Id level_1 0
0 25 Filter 1 1
1 25 Filter 2 1
2 25 Filter 3 3
3 30 Filter 1 1
4 30 Filter 2 0
5 30 Filter 3 1
6 31 Filter 1 1
7 31 Filter 2 1
8 31 Filter 3 1
简短版本
df.set_index('Id').sum(level=0).stack()#df.groupby('Id').sum().stack()
答案 2 :(得分:0)
使用filter
和melt
df.filter(like='Filter').groupby(df.Id).sum().T.reset_index().melt(id_vars='index')
index Id value
0 Filter 1 25 1
1 Filter 2 25 1
2 Filter 3 25 3
3 Filter 1 30 1
4 Filter 2 30 0
5 Filter 3 30 1
6 Filter 1 31 1
7 Filter 2 31 1
8 Filter 3 31 2