什么是tf.losses.absolute_difference的替代品

时间:2019-05-12 12:37:21

标签: python tensorflow2.0

我的问题是关于TF2.0。没有tf.losses.absolute_difference()函数,也没有tf.losses.Reduction.MEAN属性。

我应该改用什么? 在TF中是否有已删除的TF2函数的列表,以及它们的替换列表。

这是TF1.x代码,无法与TF2一起运行:

result = tf.losses.absolute_difference(a,b,reduction=tf.losses.Reduction.MEAN)

1 个答案:

答案 0 :(得分:0)

您仍然可以通过tf.compat.v1访问此功能:

import tensorflow as tf

labels = tf.constant([[0, 1], [1, 0], [0, 1]])
predictions = tf.constant([[0, 1], [0, 1], [1, 0]])

res = tf.compat.v1.losses.absolute_difference(labels,
                                              predictions,
                                              reduction=tf.compat.v1.losses.Reduction.MEAN)
print(res.numpy()) # 0.6666667

或者您可以自己实施:

import tensorflow as tf
from tensorflow.python.keras.utils import losses_utils

def absolute_difference(labels, predictions, weights=1.0, reduction='mean'):
    if reduction == 'mean':
        reduction_fn = tf.reduce_mean
    elif reduction == 'sum':
        reduction_fn = tf.reduce_sum
    else:
        # You could add more reductions
        pass
    labels = tf.cast(labels, tf.float32)
    predictions = tf.cast(predictions, tf.float32)
    losses = tf.abs(tf.subtract(predictions, labels))
    weights = tf.cast(tf.convert_to_tensor(weights), tf.float32)
    res = losses_utils.compute_weighted_loss(losses,
                                             weights,
                                             reduction=tf.keras.losses.Reduction.NONE)

    return reduction_fn(res, axis=None)

res = absolute_difference(labels, predictions)
print(res.numpy()) # 0.6666667