Ubuntu中PETsc的“内存不足”问题

时间:2019-05-11 16:53:04

标签: python ubuntu openmdao petsc

我正在运行使用2个并行组的OpenMDAO代码。我已经在虚拟python环境中安装了PETSc4py和mpi4py。运行我的代码时出现以下错误。该错误显示如下:“内存不足。已分配:0,已由进程使用:236814336” 这是完整的错误消息:

File "PETSc/Scatter.pyx", line 42, in petsc4py.PETSc.Scatter.create
petsc4py.PETSc.Error: error code 55
[1] VecScatterCreate() line 282 in /tmp/pycharm-packaging/petsc/src/vec/vscat/interface/vscreate.c
[1] VecScatterSetUp() line 211 in /tmp/pycharm-packaging/petsc/src/vec/vscat/interface/vscatfce.c
[1] VecScatterSetUp_MPI1() line 2543 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/mpi1/vpscat_mpi1.c
[1] VecScatterSetUp_vectype_private() line 865 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/vscat.c
[1] VecScatterCreate_PtoP() line 746 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/vscat.c
[1] VecScatterCreateLocal_PtoP_MPI1() line 2436 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/mpi1/vpscat_mpi1.c
[1] PetscMallocA() line 390 in /tmp/pycharm-packaging/petsc/src/sys/memory/mal.c
[1] VecScatterCreateLocal_PtoP_MPI1() line 2436 in /tmp/pycharm-packaging/petsc/src/vec/vscat/impls/mpi1/vpscat_mpi1.c
[1] Out of memory. Allocated: 0, Used by process: 237649920
[1] Memory requested 18446744062962991104
-------------------------------------------------------
Primary job  terminated normally, but 1 process returned
a non-zero exit code.. Per user-direction, the job has been aborted.
-------------------------------------------------------
--------------------------------------------------------------------------
mpirun detected that one or more processes exited with non-zero status, thus causing
the job to be terminated. The first process to do so was:

  Process name: [[43240,1],1]
  Exit code:    1
--------------------------------------------------------------------------

我使用以下代码调用该过程:

mpirun -np 2 python ./parallel_processing.py

以下是IDF优化的代码:

from __future__ import print_function
import pickle
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
from openmdao.api import Problem, ScipyOptimizeDriver, SqliteRecorder
import time
import random
from openmdao.recorders.case_reader import CaseReader

from ssbj_vanaret_mda import SsbjMda
from ssbj_vanaret_idf2_mda import SsbjIdf2Mda


def idf_run2(nx, ny):

    # make a counter for discipline calls
    [str_count, aer_count, pro_count] = np.zeros(3)
    a = ["str_count.p", "aer_count.p", "pro_count.p"]
    for i in a:
        with open(i, "wb") as f:
            pickle.dump(0, f)

    # Initialize an MDA to generate the starting point for IDF
    prob_init = Problem()  # initialize the optimization problem
    prob_init.model = SsbjMda(nx_input=nx)  # create the MDA

    # Design variables
    prob_init.model.add_design_var('z',  lower=np.zeros(nx), upper=np.ones(nx))
    prob_init.model.add_design_var('x1', lower=np.zeros(nx), upper=np.ones(nx))
    prob_init.model.add_design_var('x2', lower=np.zeros(nx), upper=np.ones(nx))
    prob_init.model.add_design_var('x3', lower=np.zeros(nx), upper=np.ones(nx))

    # Objective function
    prob_init.model.add_objective('range')

    # Constraints
    for i in range(nx):
        prob_init.model.add_constraint('con_g1' + str(i + 1), upper=0)
        prob_init.model.add_constraint('con_g2' + str(i + 1), upper=0)
        prob_init.model.add_constraint('con_g3' + str(i + 1), upper=0)

    prob_init.driver = ScipyOptimizeDriver(optimizer='SLSQP')
    prob_init.driver.options['maxiter'] = 0

    prob_init.setup(mode='fwd')
    prob_init.set_solver_print(1)
    prob_init.run_driver()
    prob_init.cleanup()
    y12_initial = prob_init['y12']
    y23_initial = prob_init['y23']
    y32_initial = prob_init['y32']
    y21_initial = prob_init['y21']
    y31_initial = prob_init['y31']

    # : initialize MDA for IDF
    prob = Problem()
    prob.model = SsbjIdf2Mda(nx, ny, y12_initial, y23_initial, y32_initial, y21_initial, y31_initial)
    # create the MDA
    # Design variables
    prob.model.add_design_var('z', lower=np.zeros(nx), upper=np.ones(nx))  # shared variables
    prob.model.add_design_var('x1', lower=np.zeros(nx), upper=np.ones(nx))  # local variable for structural discipline
    prob.model.add_design_var('x2', lower=np.zeros(nx), upper=np.ones(nx))  # local variable for aerodynamic discipline
    prob.model.add_design_var('x3', lower=np.zeros(nx), upper=np.ones(nx))  # local variable for propulsion discipline

    # # coupling variables
    prob.model.add_design_var('y31')
    prob.model.add_design_var('y12')
    prob.model.add_design_var('y32')
    prob.model.add_design_var('y23')
    prob.model.add_design_var('y21')

    # Objective function
    prob.model.add_objective('obj')

    # Constraints
    for i in range(nx):
        prob.model.add_constraint('con_g1' + str(i + 1), upper=0)
        prob.model.add_constraint('con_g2' + str(i + 1), upper=0)
        prob.model.add_constraint('con_g3' + str(i + 1), upper=0)

    epsilon = 1e-9
    # Coupling constraints
    for i in range(ny):
        prob.model.add_constraint('con_y12' + str(i + 1), upper=epsilon)
        prob.model.add_constraint('con_y21' + str(i + 1), upper=epsilon)
        prob.model.add_constraint('con_y23' + str(i + 1), upper=epsilon)
        prob.model.add_constraint('con_y32' + str(i + 1), upper=epsilon)
        prob.model.add_constraint('con_y31' + str(i + 1), upper=epsilon)

    # Optimizer options
    prob.driver = ScipyOptimizeDriver()
    prob.set_solver_print(2)
    prob.driver.options['optimizer'] = 'SLSQP'
    for tol in [1e-3]:
        prob.driver.options['maxiter'] = random.randint(40, 50)
        prob.driver.options['tol'] = tol
        prob.driver.add_recorder(SqliteRecorder("cases_idf.sql"))
        # Run optimization
        start_time = time.time()
        prob.setup(mode='fwd')

        # view_model(prob, outfile='n2_mdfgs.html', show_browser=True)
        prob.run_driver()
        prob.run_model()
        # prob.check_partials()
        prob.cleanup()
        end_time = time.time()
        total_time = end_time - start_time
        if prob.driver.options['tol'] == 1e-6:
            iters = len(CaseReader('cases_idf.sql').get_cases())
            cr = CaseReader('cases_idf.sql')
            case_ids = cr.get_cases()
            obj_list = ['obj']
            z = []
            [z.append(case.get_objectives(case)[obj_list[0]]) for case in case_ids]
            with open("df_idf.p", "rb") as f:
                df_idf = pickle.load(f).append(pd.DataFrame({'total iterations[IDF]': [iters],
                                                             'total time[IDF]': [total_time],
                                                             'final_objective[IDF]': z[-1]}))
            with open("df_idf.p", "wb") as f:
                pickle.dump(df_idf, f)

        elif prob.driver.options['tol'] == 1e-3:
            iters = len(CaseReader('cases_idf.sql').get_cases())
            cr = CaseReader('cases_idf.sql')
            case_ids = cr.get_cases()
            obj_list = ['obj']
            z = []
            a = ["str_count.p", "aer_count.p", "pro_count.p"]
            k = []
            for i in a:
                with open(i, "rb") as f:
                    k.append(pickle.load(f))
            [z.append(case.get_objectives(case)[obj_list[0]]) for case in case_ids]
            with open("df_idf_tol.p", "rb") as f:
                df_idf = pickle.load(f).append(pd.DataFrame({'10.total iterations[IDF_tol]': [iters],
                                                            '11.total time[IDF_tol]': [total_time],
                                                             '12.final_objective[IDF_tol]': z[-1],
                                                             '13.str_count[IDF_tol]': k[0],
                                                             '14.aer_count[IDF_tol]': k[1],
                                                             '15.pro_count[IDF_tol]': k[2]
                                                             }))
            with open("df_idf_tol.p", "wb") as f:
                pickle.dump(df_idf, f)

用于IDF优化的MDA位于此处:

from openmdao.api import Group
import numpy as np
from openmdao.api import IndepVarComp, ExecComp, ParallelGroup
from ssbj_vanaret_discipline import StructureDisc
from ssbj_vanaret_discipline import AerodynamicsDisc
from ssbj_vanaret_discipline import PropulsionDisc
from ssbj_vanaret_discipline import PerformanceDisc


class SsbjIdf2Mda(Group):

    """
    Analysis for IDF formulation where couplings are managed as additional constraints
    on input/output variables of related disciplines.
    """
    def __init__(self, nx_input, ny_input, y12_initial, y23_initial, y32_initial, y21_initial, y31_initial):
        super(SsbjIdf2Mda, self).__init__()
        self.nx = nx_input
        self.ny = ny_input
        self.y12 = y12_initial
        self.y23 = y23_initial
        self.y32 = y32_initial
        self.y31 = y31_initial
        self.y21 = y21_initial

    def setup(self):
        # Design variables
        self.add_subsystem('z_ini',  IndepVarComp('z',  .5 * np.ones(self.nx)), promotes=['*'])
        self.add_subsystem('x1_ini', IndepVarComp('x1', .5 * np.ones(self.nx)), promotes=['*'])
        self.add_subsystem('x2_ini', IndepVarComp('x2', .5 * np.ones(self.nx)), promotes=['*'])
        self.add_subsystem('x3_ini', IndepVarComp('x3', .5 * np.ones(self.nx)), promotes=['*'])

        # Couplings
        self.add_subsystem('y31_ini', IndepVarComp('y31', self.y31), promotes=['*'])
        self.add_subsystem('y12_ini', IndepVarComp('y12', self.y12), promotes=['*'])
        self.add_subsystem('y32_ini', IndepVarComp('y32', self.y32), promotes=['*'])
        self.add_subsystem('y23_ini', IndepVarComp('y23', self.y23), promotes=['*'])
        self.add_subsystem('y21_ini', IndepVarComp('y21', self.y21), promotes=['*'])

        # Disciplines

        parallel = self.add_subsystem('parallel', ParallelGroup())
        parallel.add_subsystem('Structure', StructureDisc())
        parallel.add_subsystem('Aerodynamics', AerodynamicsDisc())
        self.add_subsystem('Propulsion', PropulsionDisc())
        self.add_subsystem('Performance', PerformanceDisc())

        # Shared variables z
        self.connect('z', 'parallel.Structure.z')
        self.connect('z', 'parallel.Aerodynamics.z')
        self.connect('z', 'Propulsion.z')
        self.connect('z', 'Performance.z')

        # Local variables
        self.connect('x1', 'parallel.Structure.x1')
        self.connect('x2', 'parallel.Aerodynamics.x2')
        self.connect('x3', 'Propulsion.x3')
        self.connect('x1', 'Performance.x1')
        self.connect('x2', 'Performance.x2')
        self.connect('x3', 'Performance.x3')

        # Coupling variables
        self.connect('y21', 'parallel.Structure.y21')
        self.connect('y31', 'parallel.Structure.y31')
        self.connect('y32', 'parallel.Aerodynamics.y32')
        self.connect('y12', 'parallel.Aerodynamics.y12')
        self.connect('y23', 'Propulsion.y23')

        # Objective function
        self.add_subsystem('Obj', ExecComp('obj=range'), promotes=['obj'])

        # Connections
        self.connect('Performance.range', 'Obj.range')
        # self.connect('Propulsion.y34', 'Performance.y34')
        # self.connect('Aerodynamics.y24', 'Performance.y24')
        # self.connect('Structure.y14', 'Performance.y14')
        self.connect('parallel.Aerodynamics.y21', 'Performance.y21')
        self.connect('Propulsion.y31', 'Performance.y31')
        self.connect('Propulsion.y32', 'Performance.y32')
        self.connect('parallel.Structure.y12', 'Performance.y12')
        self.connect('parallel.Aerodynamics.y23', 'Performance.y23')

        # Coupling constraints
        for i in range(self.ny):
            self.add_subsystem('con_Y12' + str(i + 1),
                               ExecComp('con_y12' + str(i + 1) + '=(y12[' + str(i) + '] - y12k[' + str(i) + ']) ** 2',
                                        y12=self.y12,
                                        y12k=self.y12
                                        ),
                               promotes=['con_y12' + str(i + 1)])
            self.connect('parallel.Structure.y12', 'con_Y12' + str(i + 1) + '.y12')
            self.connect('y12', 'con_Y12' + str(i + 1) + '.y12k')

        for i in range(self.ny):
            self.add_subsystem('con_Y21' + str(i + 1),
                               ExecComp('con_y21' + str(i + 1) + '=(y21[' + str(i) + '] - y21k[' + str(i) + ']) ** 2',
                                        y21=self.y21,
                                        y21k=self.y21
                                        ),
                               promotes=['con_y21' + str(i + 1)])
            self.connect('parallel.Aerodynamics.y21', 'con_Y21' + str(i + 1) + '.y21')
            self.connect('y21', 'con_Y21' + str(i + 1) + '.y21k')

        for i in range(self.ny):
            self.add_subsystem('con_Y32' + str(i + 1),
                               ExecComp('con_y32' + str(i + 1) + '=(y32[' + str(i) + '] - y32k[' + str(i) + ']) ** 2',
                                        y32=self.y32,
                                        y32k=self.y32
                                        ),
                               promotes=['con_y32' + str(i + 1)])
            self.connect('Propulsion.y32', 'con_Y32' + str(i + 1) + '.y32')
            self.connect('y32', 'con_Y32' + str(i + 1) + '.y32k')

        for i in range(self.ny):
            self.add_subsystem('con_Y23' + str(i + 1),
                               ExecComp('con_y23' + str(i + 1) + '=(y23[' + str(i) + '] - y23k[' + str(i) + ']) ** 2',
                                        y23=self.y23,
                                        y23k=self.y23
                                        ),
                               promotes=['con_y23' + str(i + 1)])
            self.connect('parallel.Aerodynamics.y23', 'con_Y23' + str(i + 1) + '.y23')
            self.connect('y23', 'con_Y23' + str(i + 1) + '.y23k')

        for i in range(self.ny):
            self.add_subsystem('con_Y31' + str(i + 1),
                               ExecComp('con_y31' + str(i + 1) + '=(y31[' + str(i) + '] - y31k[' + str(i) + ']) ** 2',
                                        y31=self.y31,
                                        y31k=self.y31
                                        ),
                               promotes=['con_y31' + str(i + 1)])
            self.connect('Propulsion.y31', 'con_Y31' + str(i + 1) + '.y31')
            self.connect('y31', 'con_Y31' + str(i + 1) + '.y31k')

        # Local constraints
        for i in range(self.nx):
            self.add_subsystem('con_G1' + str(i + 1),
                               ExecComp('con_g1' + str(i + 1) + '=g1[' + str(i) + ']', g1=np.zeros(self.nx)),
                               promotes=['con_g1' + str(i + 1)])
            self.connect('parallel.Structure.g1', 'con_G1' + str(i + 1) + '.g1')

        for i in range(self.nx):
            self.add_subsystem('con_G2' + str(i + 1),
                               ExecComp('con_g2' + str(i + 1) + '=g2[' + str(i) + ']', g2=np.zeros(self.nx)),
                               promotes=['con_g2' + str(i + 1)])
            self.connect('parallel.Aerodynamics.g2', 'con_G2' + str(i + 1) + '.g2')

        for i in range(self.nx):
            self.add_subsystem('con_G3' + str(i + 1),
                               ExecComp('con_g3' + str(i + 1) + '=g3[' + str(i) + ']', g3=np.zeros(self.nx)),
                               promotes=['con_g3' + str(i + 1)])
            self.connect('Propulsion.g3', 'con_G3' + str(i + 1) + '.g3')

0 个答案:

没有答案