我想从每个组中找到N
个最大值,然后用N
和ITEM
创建VAL
列。
df = pd.DataFrame()
df['DATE'] = ['2018-01-01', '2018-01-01', '2018-01-01', '2018-01-01',
'2018-01-02', '2018-01-02', '2018-01-02', '2018-01-02']
df['ITEM'] = ['A', 'B', 'C', 'D', 'A', 'B', 'C', 'E']
df['VAL'] = [1, 4, 5, 3, 5, 4, 4, 6]
df
DATE ITEM VAL
0 2018-01-01 A 1
1 2018-01-01 B 4
2 2018-01-01 C 5
3 2018-01-01 D 3
4 2018-01-02 A 5
5 2018-01-02 B 4
6 2018-01-02 C 4
7 2018-01-02 E 6
我尝试了以下代码,但被困在这里。我找不到有效的方法来获得期望的输出。有什么想法吗?
N = 3
df.groupby(['DATE']).apply(lambda x: x.set_index('ITEM').VAL.nlargest(N)).unstack()
ITEM A B C D E
DATE
2018-01-01 NaN 4.0 5.0 3.0 NaN
2018-01-02 5.0 4.0 NaN NaN 6.0
预期输出:
DATE TOP_1 VAL_1 TOP_2 VAL_2 TOP_3 VAL_3
0 2018-01-01 C 5 B 4 D 3
1 2019-01-02 E 6 A 5 B 4
答案 0 :(得分:1)
将GroupBy.cumcount
用于计数器列,将DataFrame.set_index
与DataFrame.unstack
进行整形,并将MultiIndex
展平,对f-string
使用列表理解:
df1 = df.groupby(['DATE']).apply(lambda x: x.set_index('ITEM').VAL.nlargest(N)).reset_index()
或者:
df1 = df.sort_values(['DATE','VAL'], ascending=[True, False]).groupby('DATE').head(N)
g = df1.groupby('DATE').cumcount().add(1)
df1 = df1.set_index(['DATE',g]).unstack().sort_index(level=1, axis=1)
df1.columns = [f'{x}_{y}' for x, y in df1.columns]
df1 = df1.reset_index()
print (df1)
DATE ITEM_1 VAL_1 ITEM_2 VAL_2 ITEM_3 VAL_3
0 2018-01-01 C 5 B 4 D 3
1 2018-01-02 E 6 A 5 B 4