绘制(时间段内的离散总和)与(时间段)的关系会产生具有不连续性的图形

时间:2019-05-10 17:39:04

标签: python numpy numerical-methods

我有一些与买卖比特币有关的清单。 一个是(买入或卖出)价格,另一个是相关日期。 当我绘制在不同时间段与不同时间段内从购买/出售中赚取(或损失)的总资金时,结果是“震荡”-并非我所期望的。而且我认为我的逻辑可能是错误的

我的原始输入列表如下:

dates=['2013-05-12 00:00:00', '2013-05-13 00:00:00', '2013-05-14 00:00:00', ....]

prices=[114.713, 117.18, 114.5, 114.156,...]

#simple moving average of prices calced over a short period
sma_short_list = [None, None, None, None, 115.2098, 116.8872, 118.2272, 119.42739999999999, 121.11219999999999, 122.59219999999998....]

#simple moving average of prices calced over a longer period
sma_long_list = [...None, None, None, None, 115.2098, 116.8872, 118.2272, 119.42739999999999, 121.11219999999999, 122.59219999999998....]

基于移动平均交叉(基于https://stackoverflow.com/a/14884058/2089889计算),我将以发生交叉的日期/价格买卖比特币。

我想弄清楚(这种方法到今天为止能给我带来多少收益)与(几天前我开始采用这种方法的时间)

但是

我遇到麻烦的是,生成的图确实很不连贯。首先,我认为这是因为我的买入多于卖出(反之亦然),所以我尝试考虑这一点。但这仍然很不稳定。 注意,以下代码在循环for days_ago in reversed(range(0,approach_started_days_ago)):中被调用,因此每次执行以下代码时,它都应该吐出如果我 days_ago开始使用该方法会赚多少钱 em>(我称为 bank ),而断断续续的情节是 days_ago bank

dates = data_dict[file]['dates']
prices = data_dict[file]['prices']
sma_short_list = data_dict[file]['sma'][str(sma_short)]
sma_long_list = data_dict[file]['sma'][str(sma_long)]

prev_diff=0
bank = 0.0
buy_amt, sell_amt = 0.0,0.0
buys,sells, amt, first_tx_amt, last_tx_amt=0,0,0, 0, 0
start, finish = len(dates)-days_ago,len(dates)
for j in range(start, finish):
    diff = sma_short_list[j]-sma_long_list[j]
    amt=prices[j]

    #If a crossover of the moving averages occured
    if diff*prev_diff<0:
        if first_tx_amt==0:
            first_tx_amt = amt
        #BUY
        if diff>=0 and prev_diff<=0:
            buys+=1
            bank = bank - amt
            #buy_amt = buy_amt+amt
            #print('BUY ON %s (PRICE %s)'%(dates[j], prices[j]))
        #SELL
        elif diff<=0 and prev_diff>=0:
            sells+=1
            bank = bank + amt
            #sell_amt = sell_amt + amt
            #print('SELL ON %s (PRICE %s)'%(dates[j], prices[j]))
    prev_diff=diff

last_tx_amt=amt
#if buys > sells, subtract last
if buys > sells:
    bank = bank + amt
elif sells < buys:
    bank = bank - amt

#THIS IS RELATED TO SOME OTHER APPROACH I TRIED
#a = (buy_amt) / buys if buys else 0
#b = (sell_amt) / sells if sells else 0
#diff_of_sum_of_avg_tx_amts = a - b

start_date = datetime.now()-timedelta(days=days_ago)

return bank, start_date

1 个答案:

答案 0 :(得分:0)

我认为在“银行”中的金额就是我已售出的金额-我已购买的金额

但是,如果第一个跨界交易是一个卖出交易,我就不愿计算在内(我假设我做的第一个交易将是一个买入交易。

然后,如果我最后一笔交易是买入的(对我的银行不利),我会将今天的价格计入我的“银行”中

if last_tx_type=='buy':
    sell_amt=sell_amt+prices[len(prices)-1] #add the current amount to the sell amount if the last purchase you made is a buy
if sell_first==True:
    sell_amt = sell_amt - first_tx_amt #if the first thing you did was sell, you do not want to add this to money made b/c it was with apriori money

bank = sell_amt-buy_amt