Gensim:绘制Word2Vec模型中的单词列表

时间:2019-05-10 11:24:57

标签: python gensim word2vec

我有一个使用Word2Vec训练的模型。它运作良好。 我只想绘制我在列表中输入的仅单词列表。 我已经在下面编写了该函数(并重用了一些找到的代码),并在将向量添加到 arr 时得到了以下错误消息: “ ValueError:所有输入数组的维数必须相同”

def display_wordlist(model, wordlist):
    vector_dim = model.vector_size
    arr = np.empty((0,vector_dim), dtype='f') #dimension trained by the model
    word_labels = [word]

    # get words from word list and append vector to 'arr'
    for wrd in wordlist:
        word_array = model[wrd]
        arr = np.append(arr,np.array(word_array), axis=0) #This goes wrong

    # Use tsne to reduce to 2 dimensions
    tsne = TSNE(perplexity=65,n_components=2, random_state=0)
    np.set_printoptions(suppress=True)
    Y = tsne.fit_transform(arr)

    x_coords = Y[:, 0]
    y_coords = Y[:, 1]
    # display plot
    plt.figure(figsize=(16, 8)) 
    plt.plot(x_coords, y_coords, 'ro')

    for label, x, y in zip(word_labels, x_coords, y_coords):
        plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points')
    plt.xlim(x_coords.min()+0.00005, x_coords.max()+0.00005)
    plt.ylim(y_coords.min()+0.00005, y_coords.max()+0.00005)
    plt.show()

2 个答案:

答案 0 :(得分:1)

arr的形状为(0, vector_dim),而word_array的形状为(vector_dim,)。这就是为什么您会收到该错误。

只需重塑word_array即可达到目的:

word_array = model[wrd].reshape(1, -1)

侧注

为什么要传递单词列表而不是“查询”模型呢?

wordlist = list(model.wv.vocab)

答案 1 :(得分:0)

谢谢。现在,我已经修改了代码,并提供了正确的结果:

def display_wordlist(model, wordlist):
    vectors = [model[word] for word in wordlist if word in model.wv.vocab.keys()]
    word_labels = [word for word in wordlist if word in model.wv.vocab.keys()]
    word_vec_zip = zip(word_labels, vectors)

    # Convert to a dict and then to a DataFrame
    word_vec_dict = dict(word_vec_zip)
    df = pd.DataFrame.from_dict(word_vec_dict, orient='index')

    # Use tsne to reduce to 2 dimensions
    tsne = TSNE(perplexity=65,n_components=2, random_state=0)
    np.set_printoptions(suppress=True)
    Y = tsne.fit_transform(df)

    x_coords = Y[:, 0]
    y_coords = Y[:, 1]
    # display plot
    plt.figure(figsize=(16, 8)) 
    plt.plot(x_coords, y_coords, 'ro')

    for label, x, y in zip(df.index, x_coords, y_coords):
        plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points')
    plt.xlim(x_coords.min()+0.00005, x_coords.max()+0.00005)
    plt.ylim(y_coords.min()+0.00005, y_coords.max()+0.00005)
    plt.show()