我想对某些数据进行一些pivot
操作。就像跟随。
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
... 'two'],
... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
... 'baz': [1, 2, 3, 4, 5, 6],
... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
>>> df
foo bar baz zoo
0 one A 1 x
1 one B 2 y
2 one C 3 z
3 two A 4 q
4 two B 5 w
5 two C 6 t
>>> df.pivot(index='foo', columns='bar', values='baz')
bar A B C
foo
one 1 2 3
two 4 5 6
我知道DolphinDB可以在sql中完成pivot
。
dateValue=2007.08.01
num=500
syms = (exec count(*) from taq
where
date = dateValue,
time between 09:30:00 : 15:59:59,
0<bid, bid<ofr, ofr<bid*1.2
group by symbol order by count desc).symbol[0:num]
priceMatrix = exec avg(bid + ofr)/2.0 as price from taq
where
date = dateValue, Symbol in syms,
0<bid, bid<ofr, ofr<bid*1.2,
time between 09:30:00 : 15:59:59
pivot by time.minute() as minute, Symbol
但是如何在Clickhouse中进行pivot
?我应该使用客户端API来获取数据吗?但是行太多了,很难处理很多行。如果我不能使用pandas
,如何轻松实现pivot
操作?
答案 0 :(得分:4)
这是可以帮助您入门的初步实施。
备注:
行中的“孔”(每列应包含值)
强制转换为通用类型(字符串)的所有列的类型
引入了字段 orderNum 。它是结果中源列的订单号(例如,“ bar”列为第二列)
结果表示为具有Array类型的一列的行。数组项的顺序由 orderNum 定义。
准备测试数据:
CREATE TABLE test.pivot_test
(
orderNum Int,
s String,
values Array(String)
) ENGINE = Memory;
INSERT INTO test.pivot_test
VALUES
(1, 'foo', ['one', 'one', 'one', 'two', 'two', 'two']),
(3, 'baz', ['1', '2', '3', '4', '5', '6']),
(4, 'zoo', ['x', 'y', 'z', 'q', 'w', 't']),
(2, 'bar', ['A', 'B', 'C', 'A', 'B', 'C']);
/*
The content of table test.pivot_test:
┌─orderNum─┬─s───┬─values────────────────────────────────┐
│ 1 │ foo │ ['one','one','one','two','two','two'] │
│ 3 │ baz │ ['1','2','3','4','5','6'] │
│ 4 │ zoo │ ['x','y','z','q','w','t'] │
│ 2 │ bar │ ['A','B','C','A','B','C'] │
└──────────┴─────┴───────────────────────────────────────┘
*/
枢轴仿真:
SELECT arrayMap(x -> x.1, arraySort(x -> x.2, groupArray(value_ordernum))) as row
FROM
(
SELECT
(value, orderNum) AS value_ordernum,
value_index
FROM test.pivot_test
ARRAY JOIN
values AS value,
arrayEnumerate(values) AS value_index
/*
The result of execution the nested query:
┌─value_ordernum─┬─value_index─┐
│ ('one',1) │ 1 │
│ ('one',1) │ 2 │
│ ('one',1) │ 3 │
│ ('two',1) │ 4 │
│ ('two',1) │ 5 │
│ ('two',1) │ 6 │
│ ('1',3) │ 1 │
│ ('2',3) │ 2 │
│ ('3',3) │ 3 │
│ ('4',3) │ 4 │
│ ('5',3) │ 5 │
│ ('6',3) │ 6 │
│ ('x',4) │ 1 │
│ ('y',4) │ 2 │
│ ('z',4) │ 3 │
│ ('q',4) │ 4 │
│ ('w',4) │ 5 │
│ ('t',4) │ 6 │
│ ('A',2) │ 1 │
│ ('B',2) │ 2 │
│ ('C',2) │ 3 │
│ ('A',2) │ 4 │
│ ('B',2) │ 5 │
│ ('C',2) │ 6 │
└────────────────┴─────────────┘
*/
)
GROUP BY value_index;
/*
The final result:
┌─row─────────────────┐
│ ['two','A','4','q'] │
│ ['one','C','3','z'] │
│ ['one','B','2','y'] │
│ ['two','B','5','w'] │
│ ['one','A','1','x'] │
│ ['two','C','6','t'] │
└─────────────────────┘
*/