我正在使用SimpleBlobDetector
来定位小数点和其他类型的标点符号,如下图所示,有时检测器会从文本的实心区域中拾取斑点(底部中9),我正在寻找一种通过SimpleBlobDetector
或后期处理来过滤掉这些检测结果的方法。
是否有一种方法可以指定斑点必须与背景色分开?也许是边缘检测方法?
感谢您的帮助。
检测器代码为:
params = cv2.SimpleBlobDetector_Params()
params.filterByArea = True
params.minArea = 30
params.minThreshold = 50
params.maxThreshold = 200
params.filterByConvexity = True
params.minConvexity = 0.87
params.filterByColor = True
detector = cv2.SimpleBlobDetector_create(params)
detections = detector.detect(img)
答案 0 :(得分:3)
这不是使用SimpleBlobDetector
,而是一种利用边缘/轮廓检测的解决方案,该方法可以进行更多的过滤控制。主要思想是
阈值图像
Canny边缘检测
扩张以增强轮廓
根据面积检测和过滤轮廓
输出结果
检测到的轮廓:1
import numpy as np
import cv2
original_image = cv2.imread("1.jpg")
image = original_image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
thresh = cv2.threshold(blurred, 110, 255,cv2.THRESH_BINARY)[1]
canny = cv2.Canny(thresh, 150, 255, 1)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
dilate = cv2.dilate(canny, kernel, iterations=1)
cv2.imshow("dilate", dilate)
cv2.imshow("thresh", thresh)
cv2.imshow("canny", canny)
# Find contours in the image
cnts = cv2.findContours(dilate.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
contours = []
threshold_min_area = 1100
threshold_max_area = 1200
for c in cnts:
area = cv2.contourArea(c)
if area > threshold_min_area and area < threshold_max_area:
cv2.drawContours(original_image,[c], 0, (0,255,0), 3)
contours.append(c)
cv2.imshow("detected", original_image)
print('contours detected: {}'.format(len(contours)))
cv2.waitKey(0)