我是CUDA和Thrust的新手,我正在尝试实现矩阵乘法,并且我想仅通过使用推力算法来实现这一点,因为我想避免手动调用内核。
有没有办法可以有效地实现这一目标? (至少不使用2个嵌套的for循环)
还是我必须辞职并致电CUDA内核?
//My data
thrust::device_vector<float> data(n*m);
thrust::device_vector<float> other(m*r);
thrust::device_vector<float> result(n*r);
// To make indexing faster, not really needed
transpose(other);
// My current approach
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < r;++j)
{
result[i*r+ j] = thrust::inner_product(data.begin()+(i*m), data.begin()+((i+1)*m),other+(j*m), 0.0f);
}
}
答案 0 :(得分:0)
如果您对性能感兴趣(通常是为什么人们使用GPU执行计算任务),则不应使用推力,并且不应调用或编写自己的CUDA内核。您应该使用CUBLAS库。对于学习练习,如果您想学习自己的CUDA内核,可以参考a first-level-optimized CUDA version in the CUDA programming guide in the shared memory section。如果您真的想在单个推力调用中使用推力,则可以。
基本思想是使用像here所述的类似推力:::变换的元素方式操作。每个输出数组元素的点积是使用包含循环的函子来计算的。
这是一个考虑3种方法的有效示例。您原来的双嵌套循环方法(相对较慢),单推力调用方法(较快)和cublas方法(最快,对于较大的矩阵尺寸肯定是最快的)。下面的代码仅针对矩阵边尺寸为200或更小的方法运行方法1,因为它是如此之慢。这是Tesla P100的示例:
$ cat t463.cu
#include <thrust/device_vector.h>
#include <thrust/transform.h>
#include <thrust/inner_product.h>
#include <thrust/execution_policy.h>
#include <thrust/equal.h>
#include <thrust/iterator/constant_iterator.h>
#include <cublas_v2.h>
#include <iostream>
#include <time.h>
#include <sys/time.h>
#include <cstdlib>
#define USECPSEC 1000000ULL
long long dtime_usec(unsigned long long start){
timeval tv;
gettimeofday(&tv, 0);
return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}
struct dp
{
float *A, *B;
int m,n,r;
dp(float *_A, float *_B, int _m, int _n, int _r): A(_A), B(_B), m(_m), n(_n), r(_r) {};
__host__ __device__
float operator()(size_t idx){
float sum = 0.0f;
int row = idx/r;
int col = idx - (row*r); // cheaper modulo
for (int i = 0; i < m; i++)
sum += A[col + row*i] * B[col + row*i];
return sum;}
};
const int dsd = 200;
int main(int argc, char *argv[]){
int ds = dsd;
if (argc > 1) ds = atoi(argv[1]);
const int n = ds;
const int m = ds;
const int r = ds;
// data setup
thrust::device_vector<float> data(n*m,1);
thrust::device_vector<float> other(m*r,1);
thrust::device_vector<float> result(n*r,0);
// method 1
//let's pretend that other is (already) transposed for efficient memory access by thrust
// therefore each dot-product is formed using a row of data and a row of other
long long dt = dtime_usec(0);
if (ds < 201){
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < r;++j)
{
result[i*r+ j] = thrust::inner_product(data.begin()+(i*m), data.begin()+((i+1)*m),other.begin()+(j*m), 0.0f);
}
}
cudaDeviceSynchronize();
dt = dtime_usec(dt);
if (thrust::equal(result.begin(), result.end(), thrust::constant_iterator<float>(m)))
std::cout << "method 1 time: " << dt/(float)USECPSEC << "s" << std::endl;
else
std::cout << "method 1 failure" << std::endl;
}
thrust::fill(result.begin(), result.end(), 0);
cudaDeviceSynchronize();
// method 2
//let's pretend that data is (already) transposed for efficient memory access by thrust
// therefore each dot-product is formed using a column of data and a column of other
dt = dtime_usec(0);
thrust::transform(thrust::counting_iterator<int>(0), thrust::counting_iterator<int>(n*r), result.begin(), dp(thrust::raw_pointer_cast(data.data()), thrust::raw_pointer_cast(other.data()), m, n, r));
cudaDeviceSynchronize();
dt = dtime_usec(dt);
if (thrust::equal(result.begin(), result.end(), thrust::constant_iterator<float>(m)))
std::cout << "method 2 time: " << dt/(float)USECPSEC << "s" << std::endl;
else
std::cout << "method 2 failure" << std::endl;
// method 3
// once again, let's pretend the data is ready to go for CUBLAS
cublasHandle_t h;
cublasCreate(&h);
thrust::fill(result.begin(), result.end(), 0);
float alpha = 1.0f;
float beta = 0.0f;
cudaDeviceSynchronize();
dt = dtime_usec(0);
cublasSgemm(h, CUBLAS_OP_T, CUBLAS_OP_T, n, r, m, &alpha, thrust::raw_pointer_cast(data.data()), n, thrust::raw_pointer_cast(other.data()), m, &beta, thrust::raw_pointer_cast(result.data()), n);
cudaDeviceSynchronize();
dt = dtime_usec(dt);
if (thrust::equal(result.begin(), result.end(), thrust::constant_iterator<float>(m)))
std::cout << "method 3 time: " << dt/(float)USECPSEC << "s" << std::endl;
else
std::cout << "method 3 failure" << std::endl;
}
$ nvcc -o t463 t463.cu -lcublas
$ ./t463
method 1 time: 20.1648s
method 2 time: 6.3e-05s
method 3 time: 5.7e-05s
$ ./t463 1024
method 2 time: 0.008063s
method 3 time: 0.000458s
$
对于默认尺寸为200的情况,单推力调用和cublas方法非常接近,但比loop方法快得多。在侧面尺寸为1024的情况下,cublas方法比单推力调用方法快将近20倍。
请注意,我为所有3种方法都选择了“最佳”转置配置。对于方法1,最佳情况时机是当inner_product使用来自每个输入矩阵的“行”(实际上是第二个输入矩阵的转置)时。对于方法2,最佳情况时机是函子从每个输入矩阵遍历“列”时(实际上是第一输入矩阵的转置)。对于方法3,两个输入矩阵的CUBLAS_OP_T
选择似乎是最快的。实际上,只有cublas方法才具有灵活性,可用于各种性能良好的输入案例。