我使用Keras MNIST数据集,现在我想使用Google数据集街景门牌号码(SVHN)来训练我的程序。我不知道要在我的代码中加载SVHN数据集(文件.mat),我需要修改什么
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras import backend as K
import tensorflow as tf
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D
img_rows, img_cols = 28, 28
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
image_index = 7777
print(y_train[image_index])
plt.imshow(x_train[image_index], cmap='Greys')
x_train.shape
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
input_shape = (28, 28, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print('Number of images in x_train', x_train.shape[0])
print('Number of images in x_test', x_test.shape[0])
model = Sequential()
model.add(Conv2D(28, kernel_size=(3,3), input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation=tf.nn.relu))
model.add(Dropout(0.2))
model.add(Dense(10,activation=tf.nn.softmax))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x=x_train,y=y_train, epochs=2)
model.evaluate(x_test, y_test)
image_index = 9999
plt.imshow(x_test[image_index].reshape(28, 28),cmap='Greys')
pred = model.predict(x_test[image_index].reshape(1, img_rows, img_cols, 1))
print(pred.argmax())
答案 0 :(得分:0)
您可以使用.mat
读取scipy.io.loadmat
文件,该文件将返回一个值作为numpy
数组的字典。请参阅文档here。您可能需要根据需要重塑数据。
注意他们提到
您将需要HDF5 python库来读取MATLAB 7.3格式的mat文件。