我正在尝试将所有googlebooks-1gram文件导入postgresql数据库。我为此编写了以下Java代码:
public class ToPostgres {
public static void main(String[] args) throws Exception {
String filePath = "./";
List<String> files = new ArrayList<String>();
for (int i =0; i < 10; i++) {
files.add(filePath+"googlebooks-eng-all-1gram-20090715-"+i+".csv");
}
Connection c = null;
try {
c = DriverManager.getConnection("jdbc:postgresql://localhost/googlebooks",
"postgres", "xxxxxx");
} catch (SQLException e) {
e.printStackTrace();
}
if (c != null) {
try {
PreparedStatement wordInsert = c.prepareStatement(
"INSERT INTO words (word) VALUES (?)", Statement.RETURN_GENERATED_KEYS
);
PreparedStatement countInsert = c.prepareStatement(
"INSERT INTO wordcounts (word_id, \"year\", total_count, total_pages, total_books) " +
"VALUES (?,?,?,?,?)"
);
String lastWord = "";
Long lastId = -1L;
for (String filename: files) {
BufferedReader input = new BufferedReader(new FileReader(new File(filename)));
String line = "";
while ((line = input.readLine()) != null) {
String[] data = line.split("\t");
Long id = -1L;
if (lastWord.equals(data[0])) {
id = lastId;
} else {
wordInsert.setString(1, data[0]);
wordInsert.executeUpdate();
ResultSet resultSet = wordInsert.getGeneratedKeys();
if (resultSet != null && resultSet.next())
{
id = resultSet.getLong(1);
}
}
countInsert.setLong(1, id);
countInsert.setInt(2, Integer.parseInt(data[1]));
countInsert.setInt(3, Integer.parseInt(data[2]));
countInsert.setInt(4, Integer.parseInt(data[3]));
countInsert.setInt(5, Integer.parseInt(data[4]));
countInsert.executeUpdate();
lastWord = data[0];
lastId = id;
}
}
} catch (SQLException e) {
e.printStackTrace();
}
}
}
}
然而,当运行它约3个小时时,它只在wordcounts表中放置了1.000.000个条目。当我检查整个1gram数据集中的行数时,它是500.000.000行。所以进口一切大概需要62.5天,我可以接受它大约一周进口,但是2个月?我认为我在这里做了一些严重错误的事情(我确实有一台全天候运行的服务器,所以我实际上可以运行它这么长时间,但速度会更快XD)
编辑:这段代码是我解决它的方式:
public class ToPostgres {
public static void main(String[] args) throws Exception {
String filePath = "./";
List<String> files = new ArrayList<String>();
for (int i =0; i < 10; i++) {
files.add(filePath+"googlebooks-eng-all-1gram-20090715-"+i+".csv");
}
Connection c = null;
try {
c = DriverManager.getConnection("jdbc:postgresql://localhost/googlebooks",
"postgres", "xxxxxx");
} catch (SQLException e) {
e.printStackTrace();
}
if (c != null) {
c.setAutoCommit(false);
try {
PreparedStatement wordInsert = c.prepareStatement(
"INSERT INTO words (id, word) VALUES (?,?)"
);
PreparedStatement countInsert = c.prepareStatement(
"INSERT INTO wordcounts (word_id, \"year\", total_count, total_pages, total_books) " +
"VALUES (?,?,?,?,?)"
);
String lastWord = "";
Long id = 0L;
for (String filename: files) {
BufferedReader input = new BufferedReader(new FileReader(new File(filename)));
String line = "";
int i = 0;
while ((line = input.readLine()) != null) {
String[] data = line.split("\t");
if (!lastWord.equals(data[0])) {
id++;
wordInsert.setLong(1, id);
wordInsert.setString(2, data[0]);
wordInsert.executeUpdate();
}
countInsert.setLong(1, id);
countInsert.setInt(2, Integer.parseInt(data[1]));
countInsert.setInt(3, Integer.parseInt(data[2]));
countInsert.setInt(4, Integer.parseInt(data[3]));
countInsert.setInt(5, Integer.parseInt(data[4]));
countInsert.executeUpdate();
lastWord = data[0];
if (i % 10000 == 0) {
c.commit();
}
if (i % 100000 == 0) {
System.out.println(i+" mark file "+filename);
}
i++;
}
c.commit();
}
} catch (SQLException e) {
e.printStackTrace();
}
}
}
}
我现在大约15分钟就达到了150万行。这对我来说足够快了,谢谢大家!
答案 0 :(得分:4)
JDBC连接默认启用自动提交,它带有每个语句的开销。尝试禁用它:
c.setAutoCommit(false)
然后分批提交,其中包括:
long ops = 0;
for(String filename : files) {
// ...
while ((line = input.readLine()) != null) {
// insert some stuff...
ops ++;
if(ops % 1000 == 0) {
c.commit();
}
}
}
c.commit();
答案 1 :(得分:3)
如果您的表具有索引,则删除它们,插入数据以及稍后重新创建索引可能会更快。
设置autocommit off,并且每隔10 000条记录执行一次手动提交(查看文档中的合理值 - 有一些限制)也可以加快速度。
自己生成索引/外键并跟踪它应该比wordInsert.getGeneratedKeys();
快,但我不确定,是否可以从您的内容中获取。
有一种称为“批量插入”的方法。我不记得细节,但它是搜索的起点。
答案 2 :(得分:2)
将其编写为执行线程,同时运行4个线程,或者将其拆分(从配置文件中读取)并将其分发到X机器并让它们获取数据togeather。
答案 3 :(得分:0)
使用batch statements同时执行多个插入,而不是一次执行一次INSERT。
此外,我会删除算法中每次插入words
表后更新字数的部分,而只需在插入words
完成后计算所有字数。< / p>
答案 4 :(得分:0)
另一种方法是进行批量插入而不是单个插入。有关详细信息,请参阅此问题Whats the fastest way to do a bulk insert into Postgres?。
答案 5 :(得分:0)
创建线程
String lastWord = "";
Long lastId = -1L;
PreparedStatement wordInsert;
PreparedStatement countInsert ;
public class ToPostgres {
public void main(String[] args) throws Exception {
String filePath = "./";
List<String> files = new ArrayList<String>();
for (int i =0; i < 10; i++) {
files.add(filePath+"googlebooks-eng-all-1gram-20090715-"+i+".csv");
}
Connection c = null;
try {
c = DriverManager.getConnection("jdbc:postgresql://localhost/googlebooks",
"postgres", "xxxxxx");
} catch (SQLException e) {
e.printStackTrace();
}
if (c != null) {
try {
wordInsert = c.prepareStatement(
"INSERT INTO words (word) VALUES (?)", Statement.RETURN_GENERATED_KEYS
);
countInsert = c.prepareStatement(
"INSERT INTO wordcounts (word_id, \"year\", total_count, total_pages, total_books) " +
"VALUES (?,?,?,?,?)"
);
for (String filename: files) {
new MyThread(filename). start();
}
} catch (SQLException e) {
e.printStackTrace();
}
}
}
}
class MyThread extends Thread{
String file;
public MyThread(String file) {
this.file = file;
}
@Override
public void run() {
try {
super.run();
BufferedReader input = new BufferedReader(new FileReader(new File(file)));
String line = "";
while ((line = input.readLine()) != null) {
String[] data = line.split("\t");
Long id = -1L;
if (lastWord.equals(data[0])) {
id = lastId;
} else {
wordInsert.setString(1, data[0]);
wordInsert.executeUpdate();
ResultSet resultSet = wordInsert.getGeneratedKeys();
if (resultSet != null && resultSet.next())
{
id = resultSet.getLong(1);
}
}
countInsert.setLong(1, id);
countInsert.setInt(2, Integer.parseInt(data[1]));
countInsert.setInt(3, Integer.parseInt(data[2]));
countInsert.setInt(4, Integer.parseInt(data[3]));
countInsert.setInt(5, Integer.parseInt(data[4]));
countInsert.executeUpdate();
lastWord = data[0];
lastId = id;
}
} catch (NumberFormatException e) {
e.printStackTrace();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} catch (SQLException e) {
e.printStackTrace();
}
}