我有7个电话号码条目的数据框df,我想创建新的重命名列,例如ph1 .. ph7,并用电话号码的清除值填充它们,即删除空格,“ /”,“-”,“ +”等
有了R,我可以轻松地使用lapply,在Python中有什么方法可以做到这一点吗? 我知道do.call()可以做到,但面对将其编码为相同的问题
con_1 <- con[, c("ph1", "ph2", "ph3", "ph4", "ph5", "ph6", "ph7") :=
lapply(.SD, function(x) { gsub(paste(unlist(list(" ", "/", "-", "+")), collapse = "|"), replace = "", x) }),
.SDcols = c("phone1", "phone2", "phone3", "phone4", "phone5", "phone6", "phone7")]
dataframe con是:
kac play_id phone1 phone2 phone3 phone4 phone5 phone6 phone7
1: 5004490 20002075 0900031349 090891349 <NA> <NA> <NA> <NA> <NA>
2: 5003807 00601731 <NA> <NA> <NA> <NA> 088235311 <NA> <NA>
我需要以上的python
答案 0 :(得分:1)
假设您具有以下数据框(与您的数据框大不相同,因为您的内容不会更新)
# import module
import pandas as pd
# define data frame
df = pd.DataFrame(
[["5004490", "20002075", "09-00-03-13-49", "090891349", "", "", "", "", ""],
["5003807", "00601731", "", "", "", "", "08+82+35+31/1", "", ""],
["5003808", "00601731", "", "", "", "", "", "", "08/82/35/31/1"]],
columns=['kac', 'play_id', 'phone1','phone2', 'phone3', 'phone4', 'phone5','phone6', 'phone7']
)
# Display
print(df)
# kac play_id phone1 phone2 phone3 phone4 phone5 phone6 phone7
# 0 5004490 20002075 09-00-03-13-49 090891349
# 1 5003807 00601731 08+82+35+31/1
# 2 5003808 00601731 08/82/35/31/1
您可以定义要应用于每个单元格的函数。 applymap
做这份工作。在这里,我定义了一个函数clean_up_df
,该函数将删除+
,-
和/
:
def clean_up_df(data):
rep = data.replace('/', '') # Replace '/' by ''
rep = rep.replace('-', '') # Replace '-' by ''
rep = rep.replace('+', '') # Replace '+' by ''
return rep
# Columns to process
phone_columns = ['phone1', 'phone2', 'phone3',
'phone4', 'phone5', 'phone6', 'phone7']
# Processing the function clean_up_df
df[phone_columns] = df[phone_columns].applymap(clean_up_df)
# Display
print(df)
# kac play_id phone1 phone2 phone3 phone4 phone5 phone6 phone7
# 0 5004490 20002075 0900031349 090891349
# 1 5003807 00601731 088235311
# 2 5003808 00601731 088235311
现在,如果要处理特定列,则可以将apply
与axis=1
一起使用,这意味着:将此功能应用于数据框的每一行。
这里是一个例子:
# column to proceed
phone_col_name = "phone1"
# Same function with the column specified
def clean_up(data):
rep = data[phone_col_name].replace('/', '')
rep = rep.replace('-', '')
rep = rep.replace('+', '')
return rep
# Process
df[phone_col_name] = df.apply(clean_up, axis=1)
# Display
print(df)
# kac play_id phone1 phone2 phone3 phone4 phone5 phone6 phone7
# 0 5004490 20002075 0900031349 090891349
# 1 5003807 00601731 08+82+35+31/1
# 2 5003808 00601731 08/82/35/31/1