我的目标是针对VGG损耗计算梯度。为此,我创建了我的模型,在其中定义了自定义损耗,该损耗是使用VGG第4卷积块的输出计算得出的。
当我使用python example.py
运行tensorflow脚本时,出现错误:
ValueError: No gradients provided for any variable:
我认为发生这种情况是因为我的模型变量在VGG损失方面是不可区分的(因为VGG模型是一个独立的网络)。
总而言之,在给定输入x
的情况下,我使用解码器模型重构了图像以得到图像y_pred
。然后,我想对VGG网络进行计算并最大程度地减少损失。
我的代码如下:
example.py
import tensorflow as tf
import numpy as np
from tensorflow.keras.applications import VGG19
from tensorflow.keras.layers import Input, UpSampling2D, Conv2D
from tensorflow.keras.models import Model
import tensorflow.keras.backend as K
from tensorflow.keras.optimizers import Adam
class CustomModel:
def __init__(self, im_h, im_w, im_c):
self.im_shape = (im_h, im_w, im_c)
self.vgg_features_shape = (None, None, 512)
self.vgg_loss_model = self.build_vgg_loss()
self.kernel_size = (3,3)
self.decoder = self.build_decoder()
def build_vgg_loss(self):
vgg = VGG19(weights="imagenet", include_top=False, input_shape=self.im_shape)
vgg.outputs = [
vgg.get_layer('block1_conv1').output,
vgg.get_layer('block2_conv1').output,
vgg.get_layer('block3_conv1').output,
vgg.get_layer('block4_conv1').output
]
model = Model(inputs=vgg.inputs, outputs=vgg.outputs)
model.trainable = False
return model
def build_decoder(self):
"""
Mirrors the VGG network with max-pooling layers replaces by UpScaling Layers
"""
i = Input((None, None, 512))
x = Conv2D(filters=512, kernel_size=self.kernel_size, padding='same')(i)
x = UpSampling2D()(x)
for _ in range(4):
x = Conv2D(filters=256, kernel_size=self.kernel_size, padding='same')(x)
x = UpSampling2D()(x)
for _ in range(2):
x = Conv2D(filters=128, kernel_size=self.kernel_size, padding='same')(x)
x = UpSampling2D()(x)
for _ in range(2):
x = Conv2D(filters=64, kernel_size=self.kernel_size, padding='same')(x)
x = Conv2D(filters=3, kernel_size=self.kernel_size, padding='same')(x)
model = Model(inputs=i, outputs=x)
return model
def get_loss(self, y_pred, y):
vgg_model = self.vgg_loss_model
def content_loss(y_pred, y):
dif = vgg_model(y)[3] - vgg_model(y_pred)[3]
sq = K.square(dif)
s = K.sum(sq, axis=-1)
sqrt = K.sqrt(s)
loss = K.sum(sqrt)
return loss
return content_loss(y_pred, y)
# start of the script
tf.enable_eager_execution()
# create model
model = CustomModel(256,256,3)
# create tf.data.Dataset
output_types=(
tf.float32,
tf.float32
)
output_shapes=(
tf.TensorShape([None, None, None, None]),
tf.TensorShape([None, None, None, None])
)
def gen():
while True:
yield np.random.randn(1, 32, 32, 512), np.random.randn(1, 256, 256,3)
ds = tf.data.Dataset.from_generator(gen,
output_types=output_types,
output_shapes=output_shapes)
opt = tf.train.AdamOptimizer(0.01)
# start training
losses = []
for x, y in ds.take(100):
y_pred = model.decoder(x)
with tf.GradientTape() as t:
loss = model.get_loss(y_pred, y)
grads = t.gradient(loss, model.decoder.variables)
grads_and_vars = zip(grads, model.decoder.variables)
opt.apply_gradients(grads_and_vars)
losses.append(tf.reduce_sum(loss))
print(losses)
print('Done!')