大家好,我有一个Twitter数据集,我想用NB和SVM进行训练和测试。清洁和矢量化后,我被卡在以下物品上:
我们将高度赞赏您的指导。
```
# tokenize helper function
def text_process(raw_text):
# Check punctuation
nopunc = [char for char in list(raw_text) if char not in
string.punctuation]
# Join the characters again to form the string.
nopunc = ''.join(nopunc)
# remove any stopwords
return [word for word in nopunc.lower().split() if word.lower() not in
stopwords.words('english')]
def remove_words(word_list):
remove = ['he','and','...','“','”','’','…','and’']
return [w for w in word_list if w not in remove]
# tokenize message column and create a column for tokens
df_marathon = df_marathon.copy()
df_marathon['tokens'] = df_marathon['Text'].apply(text_process) # step 1
df_marathon['tokenized_tweet'] = df_marathon['tokens'].apply(remove_words)
# step 2
df_marathon.head(10)
# vectorize
bow_transformer =
CountVectorizer(analyzer=text_process).fit(df_marathon['tokenized_tweet'])
# print total number of vocab words
print(len(bow_transformer.vocabulary_))
# example of vectorized text
sample_tweet = df_marathon['tokenized_tweet'][16]
print(sample_tweet)
print('\n')
# vector representation
bow_sample = bow_transformer.transform([sample_tweet])
print(bow_sample)
print('\n')
# transform the entire DataFrame of messages
X = bow_transformer.transform(df_marathon['Text'])
# check out the bag-of-words counts for the entire corpus as a large
sparse matrix
print('Shape of Sparse Matrix: ', X.shape)
print('Amount of Non-Zero occurences: ', X.nnz)
#convert values obtained using the bag of words model into TFIDF values
tfidfconverter = TfidfTransformer()
X = tfidfconverter.fit_transform(X)
X.toarray()
```
****错误******* 分割错误:
ValueError Traceback (most recent call last)
~\Anaconda3\envs\Ipython.display\lib\site-packages\scipy\sparse\csr.py in asindices(x)
243 if idx_dtype != x.dtype:
--> 244 x = x.astype(idx_dtype)
245 except:
ValueError: invalid literal for int() with base 10: 'tokenized_tweet'
During handling of the above exception, another exception occurred:
IndexError Traceback (most recent call last)
<ipython-input-37-da320e3c2eee> in <module>
1 # split data into rain and test, we are creating train set 80% and test set 20%
----> 2 Train_X, Test_X, Train_Y, Test_Y = model_selection.train_test_split(X['tokenized_tweet'],ML_Corpus['label'],test_size=0.2)
~\Anaconda3\envs\Ipython.display\lib\site-packages\scipy\sparse\csr.py in __getitem__(self, key)
333 row, col = self._index_to_arrays(row, col)
334
--> 335 row = asindices(row)
336 col = asindices(col)
337 if row.shape != col.shape:
~\Anaconda3\envs\Ipython.display\lib\site-packages\scipy\sparse\csr.py in asindices(x)
244 x = x.astype(idx_dtype)
245 except:
--> 246 raise IndexError('invalid index')
247 else:
248 return x
IndexError: invalid index
*************************
Error on fitting classifier:
ValueError Traceback (most recent call last)
<ipython-input-38-6fc83fb90fa2> in <module>
----> 1 classifier = MultinomialNB().fit(X, df_marathon)
~\Anaconda3\envs\Ipython.display\lib\site-packages\sklearn\naive_bayes.py in fit(self, X, y, sample_weight)
583 self : object
584 """
--> 585 X, y = check_X_y(X, y, 'csr')
586 _, n_features = X.shape
587
~\Anaconda3\envs\Ipython.display\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
759 dtype=None)
760 else:
--> 761 y = column_or_1d(y, warn=True)
762 _assert_all_finite(y)
763 if y_numeric and y.dtype.kind == 'O':
~\Anaconda3\envs\Ipython.display\lib\site-packages\sklearn\utils\validation.py in column_or_1d(y, warn)
795 return np.ravel(y)
796
--> 797 raise ValueError("bad input shape {0}".format(shape))
798
ValueError: bad input shape (200, 3)
我的目标是针对推文数据训练和测试NB和SVM分类器。我已经清理了推文,进行了矢量化处理并将其转换为矢量数组。我的问题是,当我要拆分时,会得到相同的错误以适合分类器。请指导我哪里出问题了