将R broom / dplyr问题转换为Python

时间:2019-05-07 18:26:33

标签: python r pandas dplyr broom

我的目标是将我在R中所做的工作移植到Python。我知道那里有可以满足我需要的软件包,但是我很难将我通常在R中可以完成的工作转换为需要在Python中完成的工作。我正在处理的场景与此类似:R: Summarize inside an nlsLM() statement

我从以下R数据帧开始:

structure(list(datetime = structure(c(1514782800, 1480568400,1504242000, 1509512400, 1509512400, 1485925200, 1517461200, 1485925200, 1501563600, 1467349200, 1472706000, 1454302800, 1483246800, 1498885200, 1506834000, 1477976400, 1483246800, 1477976400, 1509512400, 1496293200, 1451624400, 1454302800, 1454302800, 1464757200, 1498885200, 1517461200, 1462078800, 1506834000, 1522558800, 1483246800, 1501563600, 1451624400, 1485925200, 1501563600, 1451624400, 1517461200, 1475298000, 1480568400, 1512104400, 1456808400, 1477976400, 1475298000, 1517461200, 1459486800, 1501563600, 1477976400, 1506834000, 1506834000, 1451624400, 1483246800), class = c("POSIXct", "POSIXt"), tzone = ""), value = c(2863.27837518519, 2878.40382333333, 1236.74444444444, 3522.48888888889, 3522.48888888889, 2033.55555555556, 3305.5, 2033.55555555556, 2094.7037037037, 3052.91875740741, 2960.52222222222, 1733.7918262963, 2850.28673851852, 2841.40740740741, 3310.77538814815, 2266.26172851852, 2850.28673851852, 2266.26172851852, 3522.48888888889, 2802.55555555556, 2196.82556740741, 1733.7918262963, 1733.7918262963, 3001.43703703704, 2841.40740740741, 3305.5, 2061.4826762963, 3310.77538814815, 3107.01851851852, 2850.28673851852, 2094.7037037037, 2196.82556740741, 2033.55555555556, 2094.7037037037, 2196.82556740741, 3305.5, 2848.90322592593, 2878.40382333333, 2873.73476703704, 2208.64755074074, 2266.2172851852, 2848.90322592593, 3305.5, 2021.68765444444, 2094.7037037037, 2266.26172851852, 3310.77538814815, 3310.77538814815, 2196.82556740741, 2850.28673851852), mon = structure(c(2018, 2016.91666666667, 2017.66666666667, 2017.83333333333, 2017.83333333333, 2017.08333333333, 2018.08333333333, 2017.08333333333, 2017.58333333333, 2016.5, 2016.66666666667, 2016.08333333333, 2017, 2017.5, 2017.75, 2016.83333333333, 2017, 2016.83333333333, 2017.83333333333, 2017.41666666667, 2016, 2016.08333333333, 2016.08333333333, 2016.41666666667, 2017.5, 2018.08333333333, 2016.33333333333, 2017.75, 2018.25, 2017, 2017.58333333333, 2016, 2017.08333333333, 2017.58333333333, 2016, 2018.08333333333, 2016.75, 2016.91666666667, 2017.91666666667, 2016.16666666667, 2016.83333333333, 2016.75, 2018.08333333333, 2016.25,2017.58333333333,2016.83333333333, 2017.75, 2017.75, 2016, 2017), class = "yearmon"), 
MW = c(2.6142700774997, 4.02670249993547, 0.666666666666667, 
0.724114015571947, 4.07197668868287, 3.74122386862433, 3.30097429092907, 
3.84858110028323, 0.666666666666667, 0.666666666666667, 4.35000446878457, 
0.666666666666667, 0.666666666666667, 3.8371824280444, 0.825077317374, 
0.666666666666667, 4.028058457579, 0.666666666666667, 4.3378032532779, 
3.84270845997837, 1.40955788986009, 0.666666666666667, 0.666666666666667, 
4.05845600900597, 4.00664052392117, 4.0295346724872, 0.666666666666667, 
4.14159923664523, 4.231951299842, 3.9562222817766, 0.666666666666667, 
3.61602795165213, 0.666666666666667, 3.58079262746603, 4.12197770915903, 
4.2610646492437, 4.02152528469467, 1.0117763092792, 2.03648922832252, 
0.666666666666667, 0.666666666666667, 3.8042476910097, 3.91787334748133, 
0.666666666666667, 0.666666666666667, 0.89571472289964, 4.1530002677697, 
3.93733212731873, 0.710671314318797, 0.666666666666667)), .Names = c("datetime", "value", "mon", "MW"), row.names = c(39113L, 12946L, 4365L, 37505L, 36601L, 31055L, 39814L, 31433L, 32105L, 20668L, 18191L, 8328L, 10232L, 25689L, 35528L, 4577L, 10302L, 5146L, 37975L, 29670L, 28429L, 7932L, 8468L, 23120L, 25111L, 39699L, 24312L, 36246L, 1556L, 11068L, 33269L, 29163L, 31685L, 32419L, 29059L, 40618L, 16751L, 11737L, 34371L, 6001L, 4864L, 16413L, 40304L, 8716L, 33190L, 5399L, 35610L, 36462L, 28338L, 10371L), class = "data.frame")

然后我使用python中的rpy2模块将其转换为熊猫,方法是使用以下代码在包含该数据帧的R文件中进行采购:

import rpy2.robjects as robjects
from rpy2.robjects.packages import importr
import rpy2.robjects.packages as rpackages
base = importr('base')
utils = importr('utils')

r = robjects.r
obj1, obj2 = r.source("python-testing_script.R")
mod_data = pandas2ri.ri2py(obj1)

所以现在我将mod_data数据框作为Python中的pandas数据框。我的目标是复制以下代码在R中的功能,但在Python中:

require(minpack.lm)
require(tidyverse)
require(broom)

dat <- structure(...) # provided in the question

predictions <- 
    dat %>% 
    ungroup %>%
    mutate(row = row_number()) %>%
    do(augment(nlsLM(
                formula = value ~ a * MW^b + 0*row, 
                data = .,
                start = list(a = 100000, b=1/3),
                upper = c(Inf, 1), 
                lower = c(0, 1/5)
               )
           )
       )

joined <- 
    dat %>%
    mutate(row = row_number()) %>%
    left_join(predictions, by=c('MW', 'value', 'row')) %>%
    select(-row)

joined %>%
    group_by(mon) %>%
    mutate(monthly_avg_prediction = mean(.fitted))

到目前为止,我已经尝试将dfply包与pybroomscipy.optimize.curve_fit一起使用,但是尝试时会遇到不同类型的错误。

我的预期结果是对pandas数据帧的预测,并与从上述R代码获得的R数据帧并行。预先感谢您提供任何有用的建议!

编辑:

我在项目上走了一些距离,但是现在我陷入了使用pybroom的过程。这是我在python中拥有的东西:

import pandas as pd
import numpy as np
from dfply import *
from scipy.optimize import curve_fit
import pybroom as br

def fitFunc(MW, a, b): return a * (MW**b)
predictions = mod_data >> ungroup >> br.augment(curve_fit(fitFunc, xdat, ydat, 
                                                              p0 = np.array([100000,1/3]), 
                                                              bounds = ([0,.2],[1000000, 1]))[0])

但是在这里我得到了错误:Sorry, "augment" does not support this object type (<class 'numpy.ndarray'>)

因此,我现在更具体的问题是如何将使用curve_fit创建的模型转换为pybroom可以运行augmenttidy的模型。谢谢!

1 个答案:

答案 0 :(得分:1)

https://pybroom.readthedocs.io/en/stable/notebooks/pybroom-example-multi-datasets-scipy-robust-fit.html

根据此链接中pybroom的文档,augment无法与cuve_fit函数一起使用。您需要切换为使用lmfit或根本不使用augment部分。