向量unordered_maps,在地图中搜索速度太慢

时间:2019-05-07 15:11:47

标签: c++ performance dictionary vector unordered-map

我写了一个小程序,用一个样本数据创建了两百万张地图的向量,然后查询一些值。

我知道我现在可以使用数据库,但是我只是在玩耍以进行性能优化。

代码:

#include <iostream>
#include <vector>
#include <unordered_map>
#include <map>
#include <string>
#include <chrono>

using namespace std;

static int NUM_OF_MAPS = 2 * 1000 * 1000;
void buildVector(vector<unordered_map <string, int>> &maps);
void find(string key, int value, vector<unordered_map <string, int>> &maps);

int main() {
    auto startPrg = chrono::steady_clock::now();

    vector<unordered_map <string, int>> maps;
    buildVector(maps);

    for (int i = 0; i < 10; i++) {
        string s(1, 'a'+ i);
        find(s, i, maps);
    }

    auto endPrg = chrono::steady_clock::now();
    cout << "program duration: " << chrono::duration_cast<chrono::microseconds>(endPrg - startPrg).count() / 1000.0 << " ms" << endl;
    return 0;
}

void find(string key, int value, vector<unordered_map <string, int>> &maps) {
    auto start = chrono::steady_clock::now();

    int matches = 0;
    for (unordered_map <string, int> &map : maps) {
        unordered_map<string,int>::const_iterator got = map.find(key);

        if (got != map.end() && got->second == value) {
            matches++;
        }
    }

    auto end = chrono::steady_clock::now();
    cout << matches << " matches for " << key << " = " << value << " in " << chrono::duration_cast<chrono::microseconds>(end - start).count() / 1000.0 << " ms" << endl;
}

void buildVector(vector<unordered_map <string, int>> &maps) {
    auto start = chrono::steady_clock::now();
    maps.reserve(NUM_OF_MAPS);

    int entryCounter = 0;
    unordered_map <string, int> map;
    for (int i = 0; i < NUM_OF_MAPS; i++) {
        map["a"] = entryCounter++;
        map["b"] = entryCounter++;
        map["c"] = entryCounter++;
        map["d"] = entryCounter++;
        map["e"] = entryCounter++;
        map["f"] = entryCounter++;
        maps.push_back(map);
        entryCounter %= 100;
    }

    auto end = chrono::steady_clock::now();
    cout << "build vector: " << chrono::duration_cast<chrono::microseconds>(end - start).count() / 1000.0 << " ms (" << maps.size() << ")" << endl;
}

输出:

build vector: 697.381 ms (2000000)
40000 matches for a = 0 in 67.873 ms
40000 matches for b = 1 in 64.176 ms
40000 matches for c = 2 in 60.484 ms
40000 matches for d = 3 in 68.102 ms
40000 matches for e = 4 in 62.71 ms
40000 matches for f = 5 in 65.723 ms
0 matches for g = 6 in 64.407 ms
0 matches for h = 7 in 45.401 ms
0 matches for i = 8 in 65.307 ms
0 matches for j = 9 in 64.371 ms
program duration: 1326.42 ms

为了比较速度,我在Java中做了同样的事情,并得到了以下结果:

build vector: 2536.971578 ms (2000000)
40000 matches for a = 0 in 59.293339 ms
40000 matches for b = 1 in 56.306123 ms
40000 matches for c = 2 in 53.503208 ms
40000 matches for d = 3 in 51.174979 ms
40000 matches for e = 4 in 50.967731 ms
40000 matches for f = 5 in 53.68969 ms
0 matches for g = 6 in 41.927401 ms
0 matches for h = 7 in 36.160645 ms
0 matches for i = 8 in 33.535616 ms
0 matches for j = 9 in 36.56883 ms
program duration: 3016.979919 ms

尽管C ++创建数据的速度要快得多,但查询部分的速度却非常慢(与Java相比)。在这方面,C ++有什么办法可以击败Java?

Java代码:

static int NUM_OF_MAPS = 2 * 1000 * 1000;

public static void run() {
    long startPrg = System.nanoTime();

    List<Map<String,Integer>> maps = new ArrayList<>(NUM_OF_MAPS);
    buildVector(maps);

    for (int i = 0; i < 10; i++) {
        String s = String.valueOf((char)('a' + i));
        find(s, i, maps);
    }

    long endPrg = System.nanoTime();
    System.out.println("program duration: " + (endPrg - startPrg) / 1000000.0 + " ms");
}


static void find(String key, Integer value, List<Map<String,Integer>> maps) {
    long start = System.nanoTime();

    int matches = 0;
    for (Map<String,Integer> map : maps) {
        Integer got = map.get(key);

        if (got != null && got.equals(value)) {
            matches++;
        }
    }

    long end = System.nanoTime();
    System.out.println(matches + " matches for " + key + " = " + value + " in " + (end - start) / 1000000.0 + " ms");
}

static void buildVector(List<Map<String,Integer>> maps) {
    long start = System.nanoTime();

    int entryCounter = 0;
    Map<String,Integer> map = new HashMap<>();
    for (int i = 0; i < NUM_OF_MAPS; i++) {
        map.put("a", entryCounter++);
        map.put("b", entryCounter++);
        map.put("c", entryCounter++);
        map.put("d", entryCounter++);
        map.put("e", entryCounter++);
        map.put("f", entryCounter++);
        maps.add(new HashMap<>(map));
        entryCounter %= 100;
    }

    long end = System.nanoTime();
    System.out.println("build vector: " + (end - start) / 1000000.0 + " ms (" + maps.size() + ")");
}

编辑:Sry复制了Java代码两次,而不是C ++代码。

2 个答案:

答案 0 :(得分:5)

c ++代码不太慢。最好对Java代码进行散列优化。

  • 在c ++中,unordered_map负责计算哈希。因此,您集合中的 每个容器 将在unordered_map<string,int>::const_iterator got = map.find(key)期间对字符串进行哈希处理。
  • 在Java中,HashMap依赖于对象的hashCode方法。事实是,String类只能在初始化和修改字符串时才能计算哈希。

hash(string) -> int计算而言,c语言中您的查找方法为O(NUM_OF_MAPS),而在Java中为O(1)

答案 1 :(得分:0)

要添加到UmNyobe的答案中,您可以通过创建自己的字符串类型来缓存计算的哈希值来提高性能:

class hashed_string : public std::string
{
public:
  hashed_string( const std::string& str )
  : std::string( str ), hash( std::hash( str ) )
  {
  }

  size_t getHash() { return hash; }

private:
  size_t hash;
};

namespace std
{
    template<> struct hash< hashed_string >
    {
        typedef hashed_string argument_type;
        typedef std::size_t result_type;
        result_type operator()(argument_type const& s) const noexcept
        {
          return s.getHash();
        }
    };
}

您需要扩展hashed_string的实现,以防止修改基础字符串或在修改字符串时重新计算哈希。通过使字符串成为成员而不是基类,可能更容易实现。