我想绘制2D梯度下降的轨迹。不幸的是,我有以下回溯:
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,1]
我正在使用 TensorFlow v 1.13.1 和 Google COLAB 的 Python v 3.6.7 。
从下面的代码中,我发现变量target
属于类<tf.Tensor 'Placeholder_1:0' shape=(?, 1) dtype=float32>
。
我尝试按照feed_dict={features: x, target: y}
的方式进行输入,但是回溯仍然相同。
这是我用于此任务的代码:
## BLOCK 1
import tensorflow as tf
import numpy as np
from matplotlib import animation, rc
import matplotlib_utils
from IPython.display import HTML, display_html
import matplotlib.pyplot as plt
%matplotlib inline
## BLOCK 2
tf.reset_default_graph()
# generate model data
N = 1000
D = 3
x = np.random.random((N, D))
w = np.random.random((D, 1))
y = x @ w + np.random.randn(N, 1) * 0.20
## Deep Learning steps:
# 1. Get input (features) and true output (target)
features = tf.placeholder(tf.float32, shape=(None, D))
target = tf.placeholder(tf.float32, shape=(None, 1))
weights = tf.get_variable("weights", shape=(D, 1), dtype=tf.float32)
# 2. Compute the "guess" (predictions) based on the features and weights
predictions = features @ weights
# 3. Compute the loss based on the difference between the predictions and the target
loss = tf.reduce_mean((target - predictions) ** 2)
# 4. Update the weights (parameters) based on the gradient descent of the loss
optimizer = tf.train.GradientDescentOptimizer(0.1)
step = optimizer.minimize(loss)
s = tf.Session()
s.run(tf.global_variables_initializer())
_, curr_loss, curr_weights = s.run([step, loss, weights],
feed_dict={features: x, target: y})
我希望以下代码能够正常运行(运行此代码时会引起回溯):
## BLOCK 3
# nice figure settings
fig, ax = plt.subplots()
y_true_value = s.run(target)
level_x = np.arange(0, 2, 0.02)
level_y = np.arange(0, 3, 0.02)
X, Y = np.meshgrid(level_x, level_y)
Z = (X - y_true_value[0])**2 + (Y - y_true_value[1])**2
ax.set_xlim(-0.02, 2)
ax.set_ylim(-0.02, 3)
s.run(tf.global_variables_initializer())
ax.scatter(*s.run(target), c='red')
contour = ax.contour(X, Y, Z, 10)
ax.clabel(contour, inline=1, fontsize=10)
line, = ax.plot([], [], lw=2)
# start animation with empty trajectory
def init():
line.set_data([], [])
return (line,)
trajectory = [s.run(predictions)]
# one animation step (make one GD step)
def animate(i):
s.run(step)
trajectory.append(s.run(predictions))
line.set_data(*zip(*trajectory))
return (line,)
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=100, interval=20, blit=True)
注意:可以here找到库matplotlib_utils
!
示例
这是一个使代码完美运行的示例。
如果我运行以下代码而不是第二个代码块,它将显示2D精美的梯度下降。
y_guess = tf.Variable(np.zeros(2, dtype='float32'))
y_true = tf.range(1, 3, dtype='float32')
loss = tf.reduce_mean((y_guess - y_true + 0.5*tf.random_normal([2]))**2)
optimizer = tf.train.RMSPropOptimizer(0.03, 0.5)
step = optimizer.minimize(loss, var_list=y_guess)
这种轨迹是这样的:
添加这段黑色代码将显示轨迹的完美自动生成器:
## BLOCK 4
try:
display_html(HTML(anim.to_html5_video()))
except (RuntimeError, KeyError):
# In case the build-in renderers are unaviable, fall back to
# a custom one, that doesn't require external libraries
anim.save(None, writer=matplotlib_utils.SimpleMovieWriter(0.001))
现在,我想使用自己的代码(第二个代码块)绘制2D梯度下降的轨迹。
答案 0 :(得分:0)
将feed_dict
参数传递给tf.session.run
。示例:
s.run([step, loss, weights], feed_dict={features: x, target: y})
说明:
当计算图上的操作依赖于占位符时,必须提供它们。像s.run(tf.global_variables_initializer())
这样的操作不依赖于占位符,因此不传递占位符不会引发错误。