对于以下输入数据,我需要填充缺失的office_number
并创建一列以区分office_number
是原始的还是之后填充的。
以下是示例数据:
df = pd.DataFrame({'id':['1010084420','1010084420','1010084420','1010084421','1010084421','1010084421','1010084425'],
'building_name': ['A', 'A', 'A', 'East Tower', 'East Tower', 'West Tower', 'T1'],
'floor': ['1', '1', '2', '10', '10', '11','11'],
'office_number':['', '','205','','','', '1101-1105'],
'company_name': ['Ariel Resources Ltd.', 'A.O. Tatneft', '', 'Agrium Inc.', 'Creo Products Inc.', 'Cott Corp.', 'Creo Products Inc.']})
print(df)
输出:
id building_name floor office_number company_name
0 1010084420 A 1 Ariel Resources Ltd.
1 1010084420 A 1 A.O. Tatneft
2 1010084420 A 2 205
3 1010084421 East Tower 10 Agrium Inc.
4 1010084421 East Tower 10 Creo Products Inc.
5 1010084421 West Tower 11 Cott Corp.
6 1010084425 T1 11 1101-1105 Creo Products Inc.
对于office_number
,id
和building_name
相同的办公室,我需要用floor
+来填充value of floor
F
+ 001, 002, 003, etc.
;并创建一列office_num_status
,如果该列不为null,则插入original
,否则插入filled
。
这是最终的预期结果:
id building_name floor office_num_status office_number \
0 1010084420 A 1 filled 1F001
1 1010084420 A 1 filled 1F002
2 1010084420 A 2 original 205
3 1010084421 East Tower 10 filled 10F001
4 1010084421 East Tower 10 filled 10F002
5 1010084421 West Tower 11 filled 11F001
6 1010084425 T1 11 original 1101-1105
company_name
0 Ariel Resources Ltd.
1 A.O. Tatneft
2
3 Agrium Inc.
4 Creo Products Inc.
5 Cott Corp.
6 Creo Products Inc.
到目前为止,我已经完成了创建列office_num_status
的操作,但是所有值都是original
:
# method 1
df['office_num_status'] = np.where(df['office_number'].isnull(), 'filled', 'original')
# method 2
df['office_num_status'] = ['filled' if x is None else 'original' for x in df['office_number']]
# method 3
df['office_num_status'] = 'filled'
df.loc[df['office_number'] is not None, 'office_num_status'] = 'original'
有人可以帮我完成这个吗?非常感谢。
答案 0 :(得分:1)
比较缺少的字符串而不是缺少的值,用GroupBy.cumcount
添加计数器,并填充不存在的值:
mask = df['office_number'] == ''
df.insert(3, 'office_num_status', np.where(mask, 'filled', 'original'))
s = df.groupby(['id','building_name','floor']).cumcount().add(1).astype(str).str.zfill(3)
df.loc[mask, 'office_number'] = df['floor'].astype(str) + 'F' + s
print (df)
id building_name floor office_num_status office_number \
0 1010084420 A 1 filled 1F001
1 1010084420 A 1 filled 1F002
2 1010084420 A 2 original 205
3 1010084421 East Tower 10 filled 10F001
4 1010084421 East Tower 10 filled 10F002
5 1010084421 West Tower 11 filled 11F001
6 1010084425 T1 11 original 1101-1105
company_name
0 Ariel Resources Ltd.
1 A.O. Tatneft
2
3 Agrium Inc.
4 Creo Products Inc.
5 Cott Corp.
6 Creo Products Inc.