avro-python3不提供架构演进吗?

时间:2019-05-07 00:09:25

标签: python avro backwards-compatibility

我尝试使用av​​ro-python3(向后兼容)重新创建模式演变案例。

我有两种模式:

import avro.schema
from avro.datafile import DataFileReader, DataFileWriter
from avro.io import DatumReader, DatumWriter

schema_v1 = avro.schema.Parse("""
{
     "type": "record",
     "namespace": "com.example",
     "name": "CustomerV1",
     "fields": [
       { "name": "first_name", "type": "string", "doc": "First Name of Customer" },
       { "name": "last_name", "type": "string", "doc": "Last Name of Customer" },
       { "name": "age", "type": "int", "doc": "Age at the time of registration" },
       { "name": "height", "type": "float", "doc": "Height at the time of registration in cm" },
       { "name": "weight", "type": "float", "doc": "Weight at the time of registration in kg" },
       { "name": "automated_email", "type": "boolean", "default": true, "doc": "Field indicating if the user is enrolled in marketing emails" }
     ]
}
""")

schema_v2 = avro.schema.Parse("""
{
     "type": "record",
     "namespace": "com.example",
     "name": "CustomerV2",
     "fields": [
       { "name": "first_name", "type": "string", "doc": "First Name of Customer" },
       { "name": "last_name", "type": "string", "doc": "Last Name of Customer" },
       { "name": "age", "type": "int", "doc": "Age at the time of registration" },
       { "name": "height", "type": "float", "doc": "Height at the time of registration in cm" },
       { "name": "weight", "type": "float", "doc": "Weight at the time of registration in kg" },
       { "name": "phone_number", "type": ["null", "string"], "default": null, "doc": "optional phone number"},
       { "name": "email", "type": "string", "default": "missing@example.com", "doc": "email address"}
     ]
}
""")

第二个架构没有automated_email字段,但有两个附加字段:phone_numberemail

如果我使用schema_v1编写avro记录,则根据avro模式演变规则:

writer = DataFileWriter(open("customer_v1.avro", "wb"), DatumWriter(), schema_v1)
writer.append({
    "first_name": "John",
    "last_name": "Doe",
    "age" : 34, 
    "height": 178.0,
    "weight": 75.0,
    "automated_email": True
})
writer.close()

...我可以使用schema_v2读取它,只要存在不存在的字段的默认值

reader = DataFileReader(open("customer_v1.avro", "rb"), DatumReader(reader_schema=schema_v2))

for field in reader:
    print(field)

reader.close()

但是我收到以下错误

SchemaResolutionException: Schemas do not match.

我知道这在Java中有效。这是一个视频课程的例子。 有没有办法让它在python中工作?

2 个答案:

答案 0 :(得分:0)

fastavro(一种替代的python实现)可以很好地处理此问题。

使用第一个架构编写的代码在这里:

s1 = {
    "type": "record",
    "namespace": "com.example",
    "name": "CustomerV1",
    "fields": [
        {"name": "first_name", "type": "string", "doc": "First Name of Customer"},
        {"name": "last_name", "type": "string", "doc": "Last Name of Customer"},
        {"name": "age", "type": "int", "doc": "Age at the time of registration"},
        {
            "name": "height",
            "type": "float",
            "doc": "Height at the time of registration in cm",
        },
        {
            "name": "weight",
            "type": "float",
            "doc": "Weight at the time of registration in kg",
        },
        {
            "name": "automated_email",
            "type": "boolean",
            "default": True,
            "doc": "Field indicating if the user is enrolled in marketing emails",
        },
    ],
}

record = {
    "first_name": "John",
    "last_name": "Doe",
    "age": 34,
    "height": 178.0,
    "weight": 75.0,
    "automated_email": True,
}

import fastavro

with open("test.avro", "wb") as fp:
    fastavro.writer(fp, fastavro.parse_schema(s1), [record])

要阅读第二个模式:

s2 = {
    "type": "record",
    "namespace": "com.example",
    "name": "CustomerV2",
    "fields": [
        {"name": "first_name", "type": "string", "doc": "First Name of Customer"},
        {"name": "last_name", "type": "string", "doc": "Last Name of Customer"},
        {"name": "age", "type": "int", "doc": "Age at the time of registration"},
        {
            "name": "height",
            "type": "float",
            "doc": "Height at the time of registration in cm",
        },
        {
            "name": "weight",
            "type": "float",
            "doc": "Weight at the time of registration in kg",
        },
        {
            "name": "phone_number",
            "type": ["null", "string"],
            "default": None,
            "doc": "optional phone number",
        },
        {
            "name": "email",
            "type": "string",
            "default": "missing@example.com",
            "doc": "email address",
        },
    ],
}

import fastavro

with open("test.avro", "rb") as fp:
    for record in fastavro.reader(fp, fastavro.parse_schema(s2)):
        print(record)

输出如预期的那样是新字段:

{'first_name': 'John', 'last_name': 'Doe', 'age': 34, 'height': 178.0, 'weight': 75.0, 'phone_number': None, 'email': 'missing@example.com'}

答案 1 :(得分:0)

如果将第二个架构从CustomerV2更改为CustomerV1,则它可与avro-python3版本1.10.0一起使用。