Tensorflow对象检测:如何将检测到的对象存储到变量?

时间:2019-05-06 16:56:36

标签: python tensorflow object-detection

在我的异议项目中,我是tensorflow的新手,我想知道如何获取检测到的对象的“类别”

这是基本的教程和代码:https://github.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi/blob/master/Object_detection_picamera.py

所以我想知道如何将检测到的对象转换为变量?

下面是我要更改的代码

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

    sess = tf.Session(graph=detection_graph)


# Define input and output tensors (i.e. data) for the object detection classifier

# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')

# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')

# Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()
font = cv2.FONT_HERSHEY_SIMPLEX

# Initialize camera and perform object detection.
# The camera has to be set up and used differently depending on if it's a
# Picamera or USB webcam.

# I know this is ugly, but I basically copy+pasted the code for the object
# detection loop twice, and made one work for Picamera and the other work
# for USB.

### Picamera ###
if camera_type == 'picamera':
    # Initialize Picamera and grab reference to the raw capture
    camera = PiCamera()
    camera.resolution = (IM_WIDTH,IM_HEIGHT)
    camera.framerate = 10
    rawCapture = PiRGBArray(camera, size=(IM_WIDTH,IM_HEIGHT))
    rawCapture.truncate(0)

    for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):

        t1 = cv2.getTickCount()

        # Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
        # i.e. a single-column array, where each item in the column has the pixel RGB value
        frame = np.copy(frame1.array)
        frame.setflags(write=1)
        frame_expanded = np.expand_dims(frame, axis=0)

        # Perform the actual detection by running the model with the image as input
        (boxes, scores, classes, num) = sess.run(
            [detection_boxes, detection_scores, detection_classes, num_detections],
            feed_dict={image_tensor: frame_expanded})

        # Draw the results of the detection (aka 'visulaize the results')
        vis_util.visualize_boxes_and_labels_on_image_array(
            frame,
            np.squeeze(boxes),
            np.squeeze(classes).astype(np.int32),
            np.squeeze(scores),
            category_index,
            use_normalized_coordinates=True,
            line_thickness=8,
            min_score_thresh=0.40)

Please help.

0 个答案:

没有答案