我想对随机森林回归进行交叉验证,但实际上我不确定该如何做。到目前为止,这是我的代码:
library(rfUtilities)
# Read Data
base <- readxl::read_xlsx(c:\ File)
# Pull columns to use in the model
base_cl <- select(base,
Id = PLA_WTWPartyID,
Ind =Global_reference_Industry,
Num__Ind =NumInd,
Retention = Retention_AL,
Limit = Limit_AL,
Exposure = Exposure_AL,
#RL_Exposure = Risk_level_Exposure,
LPremium = Liab_Premuim_AL,
Haz_Gp = HazardGp_AL,
LPick =Loss_Pick_AL,
#RL_LPick = Level_Loss_Pick,
Rate = Rate_AL,
lob = AL_R,
Date = AL_R_Date)
#Clean Data
base_cl$_Ind[is.na(base_cl$_Ind)] <- "Other"
base_cl$Limit[base_cl$Limit == "0"] <- NA
base_cl$Exposure[base_cl$Exposure == "0"] <- NA
#Remove Rate outliers
base_cl$Rate <- remove_outliers(base_cl$Rate)
base_cl <- base_cl %>%
filter(lob == "1") %>%
filter(Date == "1") %>%
drop_na(Limit)%>%
drop_na(Exposure) %>%
drop_na(LPremium) %>%
drop_na(Retention) %>%
drop_na(Rate)
output.forest <- randomForest(Formula_3, base_cl, ntree = 400, keep.forest = T,
importance = T, localImp = T, mtry = 6)
print(output.forest)
rf.regression.fit(output.forest)
varImpPlot(output.forest, sort = TRUE)
RF_CV_2 <- rfcv(trainx = base_cl[, 4:9], trainy = base_cl[[10]], p = .2,
normalize = T,bootstrap = T, trace = T,step = 3, method = "cv")
在这最后一个错误中
RF <- rf.crossValidation(output.forest, base_cl, p = 0.1, n = 99, seed = NULL,
normalize = FALSE, bootstrap = FALSE, trace = FALSE, ntree = 400)
sample.int(length(x),size,replace,prob)中的错误:找不到对象'sample.sizes'
...,我不知道如何解决此问题。您能帮我建立一个函数或修复代码以运行交叉验证吗,也许使用k = 5或10。
答案 0 :(得分:0)
通过Google搜索:
library(tidyverse)
# Build Poisson distributions
p_dat <- map_df(1:10, ~ tibble(
l = paste(.),
x = 0:20,
y = dpois(0:20, .)
))
# Build Normal distributions
n_dat <- map_df(1:10, ~ tibble(
l = paste(.),
x = seq(0, 20, by = 0.001),
y = dnorm(seq(0, 20, by = 0.001), ., sqrt(.))
))
# Use ggplot2 to plot
ggplot(n_dat, aes(x, y, color = factor(l, levels = 1:10))) +
geom_line() +
geom_point(data = p_dat, aes(x, y, color = factor(l, levels = 1:10))) +
labs(color = "Lambda:") +
theme_minimal()
...我们发现该错误已在2月修复,但是您需要从Github安装开发版本。请访问以下网址查看错误报告和响应:https://github.com/jeffreyevans/rfUtilities/issues/4