我试图从here下载数据并放入单个Dataframe中。
我在检索正确的数据列名称时遇到了麻烦,我想在下面的代码不起作用的情况下找到正确的表列标题。
Header = pd.read_csv(io.StringIO(URL_Data.decode('utf-8')), delimiter='\t', skiprows=4, nrows=4)
数据提取:
Data = pd.read_csv(io.StringIO(URL_Data.decode('utf-8')), skiprows=9, delim_whitespace=True, header=Header, error_bad_lines=False)
Data.to_csv(r"D:\Sunil_Work\psnl\python\DataFile.csv")
答案 0 :(得分:1)
将read_fwf
与DataFrame.agg
和join
一起使用:
url = 'https://www.federalreserve.gov/paymentsystems/files/check_commcheckcolqtr.txt '
Indicator_Name = pd.read_csv(url, nrows=1, header=None)
Header = pd.read_fwf(url, skiprows=4, header=None, error_bad_lines=False, nrows=5)
Header = Header.agg(lambda x: ' '.join(x.dropna()))
print (Header)
0 Quarter
1 Volume (millions of items)
2 Volume percent change
3 Value (billions of dollars)
4 Value percent change
5 Average daily volume (millions of items)
6 Average daily value (billions of dollars)
7 Average value per check (dollars)
dtype: object
Data = pd.read_csv(url, skiprows=9, delim_whitespace=True, names=Header, error_bad_lines=False)
print (Data.head(3))
Quarter Volume (millions of items) Volume percent change \
0 2018:Q4 1,169 1.9
1 2018:Q3 1,147 -5.4
2 2018:Q2 1,212 0.1
Value (billions of dollars) Value percent change \
0 2,072 0.0
1 2,072 -8.9
2 2,274 10.0
Average daily volume (millions of items) \
0 18.9
1 18.2
2 18.9
Average daily value (billions of dollars) Average value per check (dollars)
0 33.4 1,772
1 32.9 1,805
2 35.5 1,875