model.fit产生异常:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot update variable with shape [] using a Tensor with shape [32], shapes must be equal.
[[{{node metrics/accuracy/AssignAddVariableOp}}]]
[[loss/dense_loss/categorical_crossentropy/weighted_loss/broadcast_weights/assert_broadcastable/AssertGuard/pivot_f/_50/_63]] [Op:__inference_keras_scratch_graph_1408]
模型定义:
model = tf.keras.Sequential()
model.add(tf.keras.layers.InputLayer(
input_shape=(360, 7)
))
model.add(tf.keras.layers.Conv1D(32, 1, activation='relu', input_shape=(360, 7)))
model.add(tf.keras.layers.Conv1D(32, 1, activation='relu'))
model.add(tf.keras.layers.MaxPooling1D(3))
model.add(tf.keras.layers.Conv1D(512, 1, activation='relu'))
model.add(tf.keras.layers.Conv1D(1048, 1, activation='relu'))
model.add(tf.keras.layers.GlobalAveragePooling1D())
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(32, activation='softmax'))
输入要素形状
(105, 360, 7)
输入标签形状
(105, 32, 1)
编译语句
model.compile(optimizer='adam',
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=['accuracy'])
Model.fit语句
model.fit(features,
labels,
epochs=50000,
validation_split=0.2,
verbose=1)
任何帮助将不胜感激
答案 0 :(得分:1)
您可以使用function InsertItem() {
var clientContext = new SP.ClientContext.get_current();
var oList = clientContext.get_web().get_lists().getByTitle("MyList2");
var itemCreateInfo = new SP.ListItemCreationInformation();
var oListItem = oList.addItem(itemCreateInfo);
var lookupSingle = new SP.FieldLookupValue();
lookupSingle.set_lookupId(9);
oListItem.set_item('Title', 'testInsert');
oListItem.set_item('plat_column', lookupSingle);
oListItem.update();
clientContext.load(oListItem);
clientContext.executeQueryAsync(
Function.createDelegate(this,
function () {
ItemIDCache = oListItem.get_id();
alert('Item created: ' + oListItem.get_id());
}),
Function.createDelegate(this,
function (sender, args) {
console.log(args);
}));
}
来查看模型架构。
model.summary()
您的输出层的形状必须为print(model.summary())
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d (Conv1D) (None, 360, 32) 256
_________________________________________________________________
conv1d_1 (Conv1D) (None, 360, 32) 1056
_________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 120, 32) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 120, 512) 16896
_________________________________________________________________
conv1d_3 (Conv1D) (None, 120, 1048) 537624
_________________________________________________________________
global_average_pooling1d (Gl (None, 1048) 0
_________________________________________________________________
dropout (Dropout) (None, 1048) 0
_________________________________________________________________
dense (Dense) (None, 32) 33568
=================================================================
Total params: 589,400
Trainable params: 589,400
Non-trainable params: 0
_________________________________________________________________
None
,但您的(None,32)
的形状必须为labels
。因此,您需要将形状更改为(105,32,1)
。当我们想从数组形状中删除一维条目时,可以使用(105,32)
函数。
答案 1 :(得分:0)
在密集层之前使用 Flatten()。