有效地重塑此数组

时间:2019-05-04 14:37:11

标签: python arrays numpy reshape numba

给出此数组X:

[1 2 3 2 3 1 4 5 7 1]

和行长数组R:

[3 2 5]

表示转换后每一行的长度。

我正在寻找一种计算效率高的函数来将X重整为该数组Y:

[[ 1.  2.  3. nan nan]
 [ 2.  3. nan nan nan]
 [ 1.  4.  5.  7.  1.]]

这些只是我正在处理的实际数组的简化版本。我的实际数组更像这样:

R = np.random.randint(5, size = 21000)+1
X = np.random.randint(10, size = np.sum(R))

我已经掌握了一个生成变形数组的函数,但是该函数运行太慢。我已经尝试了一些Numba功能来加快速度,但是它们会产生许多错误消息来处理。我的超级慢功能:

def func1(given_array, row_length):

    corresponding_indices = np.cumsum(row_length)



    desired_result = np.full([len(row_length),np.amax(row_length)], np.nan)
    desired_result[0,:row_length[0]] = given_array[:corresponding_indices[0]]

    for i in range(1,len(row_length)):
        desired_result[i,:row_length[i]] = given_array[corresponding_indices[i-1]:corresponding_indices[i]]

    return desired_result

当input_arrays的大小尚未超过100K时,此函数每个循环要花费34ms的艰巨时间。我正在寻找一个功能,该功能以相同的大小执行相同的操作,但每个循环的时间少于10ms

提前谢谢

1 个答案:

答案 0 :(得分:1)

这是一个利用broadcasting-向量的人-

def func2(given_array, row_length):
    given_array = np.asarray(given_array)
    row_length = np.asarray(row_length)
    mask = row_length[:,None] > np.arange(row_length.max())
    out = np.full(mask.shape, np.nan)
    out[mask] = given_array
    return out

样品运行-

In [305]: a = [1, 2, 3, 2, 3, 1, 4, 5, 7, 1]
     ...: b = [3, 2, 5]

In [306]: func2(a,b)
Out[306]: 
array([[ 1.,  2.,  3., nan, nan],
       [ 2.,  3., nan, nan, nan],
       [ 1.,  4.,  5.,  7.,  1.]])

大型数据集的时间和验证-

In [323]: np.random.seed(0)
     ...: R = np.random.randint(5, size = 21000)+1
     ...: X = np.random.randint(10, size = np.sum(R))

In [324]: %timeit func1(X,R)
100 loops, best of 3: 17.5 ms per loop

In [325]: %timeit func2(X,R)
1000 loops, best of 3: 657 µs per loop

In [332]: o1 = func1(X,R)

In [333]: o2 = func2(X,R)

In [334]: np.allclose(np.where(np.isnan(o1),0,o1),np.where(np.isnan(o2),0,o2))
Out[334]: True