f32 :: NAN锈封闭的值,以省略“ NaN”值

时间:2019-05-04 04:33:21

标签: rust

我有以下关闭内容。

let ss = aa.iter().fold(0., |sum: f32,x| if *x != f32::NAN { sum + e } else { sum + 0. })

我正在尝试对向量中的所有值求和,而忽略f32::NAN(我在向量中有几个NaN值)。

但是,我的回报给了我NaN的价值,因为我的条件if *x != f32::NAN似乎无效。因为,以下闭包将产生原始向量,而不是忽略NaN值。

let bb = aa.iter().filter(|x| **x != f32::NAN).map(|x| x)

我的问题是,如何在f32::NAN条件下匹配if值? 从更广泛的角度来看,如何在向量中忽略NaN值?

2 个答案:

答案 0 :(得分:3)

您无法通过这种方式检查NaN,因为NaN == NaN的值为false。请改用f32::is_nan。此外,您可以使用Iterator::filter来过滤出迭代器的元素,并使用Iterator::sum来对所有值求和。

这将产生以下代码(Playground):

let aa = [3.14f32, std::f32::NAN, 2.71, 27.99];
let ss = aa.iter()
    .filter(|n| !n.is_nan())
    .sum::<f32>();

println!("{}", ss);

答案 1 :(得分:1)

Warren Weckesser的正确指导下,设法使封盖工作。

这是可能需要的人的解决方案。

let ss = aa.iter().fold(0., |sum: f32, x| if x.is_nan() { sum + 0. } else { sum + x });

或者,

let ss = aa.iter().fold(0., |sum: f32, x| if x.is_nan() { sum } else { sum + x });

如果有人关心不必要的+操作。

性能比较

extern crate rand;

use rand::Rng;
fn main() {
    let mut a [f32; 1000] = [0.; 1000];
    for i in 0..1000 {
        a[i] = rand::thread_rng().gen_range(1,11);
    }
}

方法一:

let ss = a.iter()
        .filter(|n| !n.is_nan())
        .sum::<f32>();

Callgrind

>> cargo profiler callgrind -n 10

Compiling playground in debug mode...

Profiling playground with callgrind...

Total Instructions...3,959,454

177,532 (4.5%) isaac64.rs:rand::prng::isaac64::Isaac64Rng::isaac64
-----------------------------------------------------------------------
121,742 (3.1%) memmove-vec-unaligned-erms.S:memcpy@GLIBC_2.2.5
-----------------------------------------------------------------------
104,224 (2.6%) dl-lookup.c:do_lookup_x
-----------------------------------------------------------------------
102,982 (2.6%) ptr.rs:core::ptr::swap_nonoverlapping_one
-----------------------------------------------------------------------
99,660 (2.5%) intrinsics.rs:core::intrinsics::copy_nonoverlapping
-----------------------------------------------------------------------
76,555 (1.9%) strcmp.S:strcmp
-----------------------------------------------------------------------
72,997 (1.8%) local.rs:_..std..thread..local..LocalKey..T....::try_with
-----------------------------------------------------------------------
72,063 (1.8%) ptr.rs:_..core..ptr..NonNull..T....::as_ref
-----------------------------------------------------------------------
70,028 (1.8%) rc.rs:alloc::rc::RcBoxPtr::strong
-----------------------------------------------------------------------
62,000 (1.6%) ptr.rs:core::ptr::swap_nonoverlapping_one
-----------------------------------------------------------------------

方法II:

let ss = a.iter()
        .fold(0., |sum: f32, x| if x.is_nan() { sum } else { sum + x });

Callgrind

>> cargo profiler callgrind -n 10

Compiling playground in debug mode...

Profiling playground with callgrind...

Total Instructions...3,938,312

177,532 (4.5%) isaac64.rs:rand::prng::isaac64::Isaac64Rng::isaac64
-----------------------------------------------------------------------
121,766 (3.1%) memmove-vec-unaligned-erms.S:memcpy@GLIBC_2.2.5
-----------------------------------------------------------------------
104,224 (2.6%) dl-lookup.c:do_lookup_x
-----------------------------------------------------------------------
102,982 (2.6%) ptr.rs:core::ptr::swap_nonoverlapping_one
-----------------------------------------------------------------------
99,660 (2.5%) intrinsics.rs:core::intrinsics::copy_nonoverlapping
-----------------------------------------------------------------------
76,555 (1.9%) strcmp.S:strcmp
-----------------------------------------------------------------------
72,997 (1.9%) local.rs:_..std..thread..local..LocalKey..T....::try_with
-----------------------------------------------------------------------
72,063 (1.8%) ptr.rs:_..core..ptr..NonNull..T....::as_ref
-----------------------------------------------------------------------
70,028 (1.8%) rc.rs:alloc::rc::RcBoxPtr::strong
-----------------------------------------------------------------------
62,000 (1.6%) ptr.rs:core::ptr::swap_nonoverlapping_one
-----------------------------------------------------------------------

总指令中,方法II 在运行时性能方面表现很好,其中~20,000指令少于方法I 用于1000元素数组。预期这种差异将积极地转化为 Approach-II 的增强的运行时性能。调查差异的根源。