使用Pymc3进行回归的BNN

时间:2019-05-04 00:30:35

标签: neural-network regression bayesian pymc3

我正在尝试在回归任务中构建BNN,但结果似乎并不正确。

我的代码

首先,建立玩具数据

#Toy model
def build_toy_dataset(N=50, noise_std=0.2):
    x = np.linspace(-3, 3, num=N)
    y = np.cos(x) + np.random.normal(0, noise_std, size=N)
    x = x.reshape((N, 1))
    x = scale(x)
    x = x.astype(floatX)
    y = y.astype(floatX)
    return x, y

N = 50  # number of data points
D = 1  # number of features

X_train, Y_train = build_toy_dataset(N)
X_test, Y_test = build_toy_dataset(N)

fig, ax = plt.subplots()
ax.plot(X_test,Y_test,'ro',X_train,Y_train,'bx',alpha=0.2)
ax.legend(['Y_test','Y_train'])
ax.set(xlabel='X', ylabel='Y', title='Toy Regression data set');
X = scale(X)
X = X.astype(floatX)
Y = Y.astype(floatX)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)

然后,用输出定义BNN

#2 layers with 5 nodes each
def construct_nn_2Layers(ann_input, ann_output):
    n_hidden = 5
    n_features = ann_input.get_value().shape[1]

    # Initialize random weights between each layer
    init_1 = np.random.randn(n_features, n_hidden).astype(floatX)
    init_2 = np.random.randn(n_hidden, n_hidden).astype(floatX)
    init_out = np.random.randn(n_hidden).astype(floatX)

   # Initialize random biases in each layer
    init_b_1 = np.random.randn(n_hidden).astype(floatX)
    init_b_2 = np.random.randn(n_hidden).astype(floatX)
    init_b_out = np.random.randn(1).astype(floatX)

    with pm.Model() as neural_network:
        # Weights from input to hidden layer
        weights_in_1 = pm.Normal('w_in_1', 0, sd=1,
                                 shape=(n_features, n_hidden),
                                 testval=init_1)

        bias_1 = pm.Normal('b_1', mu=0, sd=1, shape=(n_hidden), testval=init_b_1)

        # Weights from 1st to 2nd layer
        weights_1_2 = pm.Normal('w_1_2', 0, sd=1,
                                shape=(n_hidden, n_hidden),
                                testval=init_2)

        bias_2 = pm.Normal('b_2', mu=0, sd=1, shape=(n_hidden), testval=init_b_2)

        # Weights from hidden layer to output
        weights_2_out = pm.Normal('w_2_out', 0, sd=1,
                                  shape=(n_hidden,),
                                  testval=init_out)
        bias_out = pm.Normal('b_out', mu=0, sd=1, shape=(1), testval=init_b_out)

        # Build neural-network using tanh activation function
        act_1 = pm.math.tanh(pm.math.dot(ann_input,
                                         weights_in_1)+bias_1)
        act_2 = pm.math.tanh(pm.math.dot(act_1,
                                         weights_1_2)+bias_2)
        act_out = pm.math.dot(act_2, weights_2_out)+bias_out

        sd = pm.HalfNormal('sd', sd=1)
        out = pm.Normal('out', mu=act_out, sd=sd, observed=ann_output)
    return neural_network

然后构造:

ann_input = theano.shared(X_train)
ann_output = theano.shared(Y_train)

neural_network = construct_nn_2Layers(ann_input, ann_output)

运行ADVI:

with neural_network:
    inference_no_s = pm.ADVI()

# Checking convergence - Tracking parameters
    tracker = pm.callbacks.Tracker(
    mean=inference_no_s.approx.mean.eval,  # callable that returns mean
    std=inference_no_s.approx.std.eval  # callable that returns std
    )

    approx_no_s = pm.fit(n=30000, method=inference_no_s, callbacks=[tracker])

在测试中进行预测:

ann_input.set_value(X_test)
ann_output.set_value(Y_test)
with neural_network:
        ppc = pm.sample_posterior_predictive(trace, samples=500, progressbar=False)

Results

这就是我得到的,似乎不相关。我在做什么错了?

0 个答案:

没有答案