我正在构建一个U-Net,我想在解码器部分使用预训练模型(VGG16)。
挑战在于我拥有灰度图像,而VGG与RGB兼容。
我发现了一个将其转换为RGB(通过级联)的函数:
from keras.layers import Layer
from keras import backend as K
class Gray2VGGInput(Layer):
"""Custom conversion layer"""
def build(self, x):
self.image_mean = K.variable(value=np.array([103.939, 116.779, 123.68]).reshape([1,1,1,3]).astype('float32'),
dtype='float32',
name='imageNet_mean' )
self.built = True
return
def call(self, x):
rgb_x = K.concatenate([x,x,x], axis=-1 )
norm_x = rgb_x - self.image_mean
return norm_x
def compute_output_shape(self, input_shape):
return input_shape[:3] + (3,)
但是我无法将其插入模型。 Gray2VGGInput
是一层,因此我正在寻找一种方法将该层与VGG中的层连接。以下是我的尝试:
def UNET1_VGG16():
'''
UNET with pretrained layers from VGG16
'''
def upsampleLayer(in_layer, concat_layer, input_size):
'''
Upsampling (=Decoder) layer building block
Parameters
----------
in_layer: input layer
concat_layer: layer with which to concatenate
input_size: input size fot convolution
'''
upsample = Conv2DTranspose(input_size, (2, 2), strides=(2, 2), padding='same')(in_layer)
upsample = concatenate([upsample, concat_layer])
conv = Conv2D(input_size, (1, 1), activation='relu', kernel_initializer='he_normal', padding='same')(upsample)
conv = BatchNormalization()(conv)
conv = Dropout(0.2)(conv)
conv = Conv2D(input_size, (1, 1), activation='relu', kernel_initializer='he_normal', padding='same')(conv)
conv = BatchNormalization()(conv)
return conv
img_rows = 864
img_cols = 1232
#--------
#INPUT
#--------
#batch, height, width, channels
inputs_1 = Input((img_rows, img_cols, 1))
inputs_3 = Input((img_rows, img_cols, 3))
#--------
#VGG16 BASE
#--------
#Prepare net
base_VGG16 = VGG16(input_tensor=inputs_3,
include_top=False,
weights='imagenet')
#----------------
#INPUT CONVERTER
#----------------
#This is the problematic part
vgg_inputs_3 = Gray2VGGInput(name='gray_to_rgb')(inputs_1)
model_input = Model(inputs=[inputs_1], outputs=[vgg_inputs_3])
new_outputs = base_VGG16(model_input.output)
new_inputs = Model(inputs_1, new_outputs)
#--------
#DECODER
#--------
c1 = base_VGG16.get_layer("block1_conv2").output #(None, 864, 1232, 64)
c2 = base_VGG16.get_layer("block2_conv2").output #(None, 432, 616, 128)
c3 = base_VGG16.get_layer("block3_conv2").output #(None, 216, 308, 256)
c4 = base_VGG16.get_layer("block4_conv2").output #(None, 108, 154, 512)
#--------
#BOTTLENECK
#--------
c5 = base_VGG16.get_layer("block5_conv2").output #(None, 54, 77, 512)
#--------
#ENCODER
#--------
c6 = upsampleLayer(in_layer=c5, concat_layer=c4, input_size=512)
c7 = upsampleLayer(in_layer=c6, concat_layer=c3, input_size=256)
c8 = upsampleLayer(in_layer=c7, concat_layer=c2, input_size=128)
c9 = upsampleLayer(in_layer=c8, concat_layer=c1, input_size=64)
#--------
#DENSE OUTPUT
#--------
outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = Model(inputs=[new_inputs.input], outputs=[outputs])
#Freeze layers
for layer in model.layers[:16]:
layer.trainable = False
print(model.summary())
model.compile(optimizer='adam',
loss=fr.diceCoefLoss,
metrics=[fr.diceCoef])
return model
我收到以下错误:
ValueError:图表已断开连接:无法在“ input_14”层获取张量Tensor(“ input_14:0”,shape =(?, 864,1232,3),dtype = float32)的值。可以顺利访问以下先前的图层:[]
答案 0 :(得分:1)
我认为您不需要多个输入,而是将Gray2VGGInput
层的输出作为输入传递到VGG16
模型。我认为您可以从VGG16
模型中获得输出张量。我可以建议以下几点:
from keras.applications import VGG16
inputs_1 = Input(shape=(img_rows, img_cols, 1))
inputs_3 = Gray2VGGInput(name='gray_to_rgb')(inputs_1) #shape=(img_rows, img_cols, 3)
base_VGG16 = VGG16(include_top=False, weights='imagenet', input_tensor=inputs_3)
#--------
#DECODER
#--------
c1 = base_VGG16.get_layer("block1_conv2").output #(None, 864, 1232, 64)
c2 = base_VGG16.get_layer("block2_conv2").output #(None, 432, 616, 128)
c3 = base_VGG16.get_layer("block3_conv2").output #(None, 216, 308, 256)
c4 = base_VGG16.get_layer("block4_conv2").output #(None, 108, 154, 512)
#--------
#BOTTLENECK
#--------
c5 = base_VGG16.get_layer("block5_conv2").output #(None, 54, 77, 512)
...
... and so on
该模型可以称为
model = Model(inputs=inputs_1, outputs=outputs)
您可以尝试一下,让我知道它是否有效。我没有测试过,所以可能会有错误。
答案 1 :(得分:0)
更改:
model_input = Model(inputs=[inputs_1], outputs=[vgg_inputs_3])
收件人
model_input = Model(inputs=[vgg_inputs_3] etc...