我正在尝试使用具有tensorflow的keras训练 braTS18 数据集(带有nifiti图像的医学数据)上的 unet 模型。但是我得到的结果很奇怪:
如您所见,准确性从96%开始,到第三个时期达到了99%。而且,验证损失不会再降低了。训练后的模型也无法预测任何事情。
我以不同的方式拆分了数据(20%训练了60%的验证,或60%训练了20%的验证),但是没有用。我认为问题可能出在我的模型或数据生成器上。这是代码:
def unet_model(filters=16, dropout=0.1, batch_normalize=True):
# Build U-Net model
inputs = Input((img_height, img_width, img_channels), name='main_input')
s = Lambda(lambda x: x / 255) (inputs)
c1 = Conv2D(filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c1') (s)
c1 = Dropout(0.1) (c1)
c1 = Conv2D(filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c1_d') (c1)
p1 = MaxPooling2D((2, 2)) (c1)
c2 = Conv2D(2*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c2') (p1)
c2 = Dropout(0.1) (c2)
c2 = Conv2D(2*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c2_d') (c2)
p2 = MaxPooling2D((2, 2)) (c2)
c3 = Conv2D(4*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c3') (p2)
c3 = Dropout(0.2) (c3)
c3 = Conv2D(4*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c3_d') (c3)
p3 = MaxPooling2D((2, 2)) (c3)
c4 = Conv2D(8*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c4') (p3)
c4 = Dropout(0.2) (c4)
c4 = Conv2D(8*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c4_d') (c4)
p4 = MaxPooling2D(pool_size=(2, 2)) (c4)
c5 = Conv2D(16*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c5') (p4)
c5 = Dropout(0.3) (c5)
c5 = Conv2D(16*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c5_d') (c5)
u6 = Conv2DTranspose(8*filters, (2, 2), strides=(2, 2), padding='same', name = 'u6') (c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(8*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c6') (u6)
c6 = Dropout(0.2) (c6)
c6 = Conv2D(8*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c6_d') (c6)
u7 = Conv2DTranspose(4*filters, (2, 2), strides=(2, 2), padding='same', name = 'u7') (c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(4*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c7') (u7)
c7 = Dropout(0.2) (c7)
c7 = Conv2D(4*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c7_d') (c7)
u8 = Conv2DTranspose(2*filters, (2, 2), strides=(2, 2), padding='same', name = 'u8') (c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(2*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c8') (u8)
c8 = Dropout(0.1) (c8)
c8 = Conv2D(2*filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c8_d') (c8)
u9 = Conv2DTranspose(filters, (2, 2), strides=(2, 2), padding='same', name = 'u9') (c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c9') (u9)
c9 = Dropout(0.1) (c9)
c9 = Conv2D(filters, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same', name = 'c9_d') (c9)
outputs = Conv2D(1, (1, 1), activation='sigmoid', name = 'output') (c9)
adam = optimizers.Adam(lr=lr, beta_1=beta1, decay=lr_decay, amsgrad=False)
model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer=adam, loss='binary_crossentropy', metrics=['accuracy',dice,jaccard])
plot_model(model, to_file=os.path.join(save_dir +"model.png"))
if os.path.exists(os.path.join(save_dir +"model.txt")):
os.remove(os.path.join(save_dir +"model.txt"))
with open(os.path.join(save_dir +"model.txt"),'w') as fh:
model.summary(positions=[.3, .55, .67, 1.], print_fn=lambda x: fh.write(x + '\n'))
model.summary()
return model
这是数据生成器的代码:
def generate_data(X_data, Y_data, batch_size):
samples_per_epoch = total_folders
number_of_batches = samples_per_epoch/batch_size
counter=0
while True:
X_batch = X_data[batch_size*counter:batch_size*(counter+1)]
Y_batch = Y_data[batch_size*counter:batch_size*(counter+1)]
counter += 1
yield X_batch, Y_batch
if counter >= number_of_batches:
counter = 0
...
in the main function
...
if __name__ == "__main__":
callbacks = [
EarlyStopping(patience=1000, verbose=1),
ReduceLROnPlateau(factor=0.1, patience=3, min_lr=0.00001, verbose=1),
ModelCheckpoint(save_dir + 'model.{epoch:02d}-{val_loss:.2f}.h5', verbose=1, save_best_only=True, save_weights_only=True)
]
model = unet_model(filters=16, dropout=0.05, batch_normalize=True)
H = model.fit_generator(generate_data(X_train,Y_train,batch_size),
epochs= epochs,
steps_per_epoch = total_folders/batch_size,
validation_data=generate_data(X_test,Y_test,batch_size*2),
callbacks=callbacks,
validation_steps= total_folders/batch_size*2)
我在做什么错了?
答案 0 :(得分:1)
我相信您的问题是损失函数/指标。如果大多数患者没有任何肿瘤,并且准确性或jaccard距离都同时考虑到这两个类别,则您的模型将通过简单地说所有东西都是backgorund / healthy来返回较高的准确性值和较低的jaccard指数值。您可以通过实现自定义损失来检查此情况,该损失始终返回背景的类标签,并将其与当前结果进行比较。要解决您的问题,请使用类似于jaccard距离的东西,以降低背景权重。 here可以找到可能比准确性更合适的各种度量的概述。
另外,也许我不了解数据集,但您不应该对不同种类的肿瘤进行细分,因此使用分类而非二进制分类吗?