我正在试验TensorFlow
2.0 alpha,发现使用Numpy
数组时它可以按预期工作,但是当使用tf.data.Dataset
时,会出现输入尺寸错误。我将虹膜数据集用作最简单的示例来演示这一点:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
import tensorflow as tf
from tensorflow.python import keras
iris = datasets.load_iris()
scl = StandardScaler()
ohe = OneHotEncoder(categories='auto')
data_norm = scl.fit_transform(iris.data)
data_target = ohe.fit_transform(iris.target.reshape(-1,1)).toarray()
train_data, val_data, train_target, val_target = train_test_split(data_norm, data_target, test_size=0.1)
train_data, test_data, train_target, test_target = train_test_split(train_data, train_target, test_size=0.2)
train_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_target))
train_dataset.batch(32)
test_dataset = tf.data.Dataset.from_tensor_slices((test_data, test_target))
test_dataset.batch(32)
val_dataset = tf.data.Dataset.from_tensor_slices((val_data, val_target))
val_dataset.batch(32)
mdl = keras.Sequential([
keras.layers.Dense(16, input_dim=4, activation='relu'),
keras.layers.Dense(8, activation='relu'),
keras.layers.Dense(8, activation='relu'),
keras.layers.Dense(3, activation='sigmoid')]
)
mdl.compile(
optimizer=keras.optimizers.Adam(0.01),
loss=keras.losses.categorical_crossentropy,
metrics=[keras.metrics.categorical_accuracy]
)
history = mdl.fit(train_dataset, epochs=10, steps_per_epoch=15, validation_data=val_dataset)
,我收到以下错误消息:
ValueError: Error when checking input: expected dense_16_input to have shape (4,) but got array with shape (1,)
假设数据集只有一维。如果我通过input_dim = 1,则会收到其他错误:
InvalidArgumentError: Incompatible shapes: [3] vs. [4]
[[{{node metrics_5/categorical_accuracy/Equal}}]] [Op:__inference_keras_scratch_graph_8223]
在tf.data.Dataset
的{{1}}模型上使用Keras
的正确方法是什么?
答案 0 :(得分:2)
一些更改应该可以修复您的代码。 .end
数据集转换不是就地发生的,因此您需要返回新的数据集。其次,您还应该添加一个batch()
转换,以便在看到所有数据后数据集继续输出示例。
repeat()
您还需要在...
train_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_target))
train_dataset = train_dataset.batch(32)
train_dataset = train_dataset.repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((val_data, val_target))
val_dataset = val_dataset.batch(32)
val_dataset = val_dataset.repeat()
...
函数中为validation_steps
添加参数:
model.fit()
对于您自己的数据,您可能需要调整验证数据集的history = mdl.fit(train_dataset, epochs=10, steps_per_epoch=15, validation_data=val_dataset, validation_steps=1)
和batch_size
,以使验证数据在每个步骤中仅循环一次。