行之间的距离

时间:2019-05-02 21:49:14

标签: r distance k-means similarity euclidean-distance

很抱歉,这是我在一次灾难性的较早尝试之后为救赎自己所做的尝试。现在我更加清楚了。所以我再来一次。

我的目标是找到相似的行。所以首先我对计算行之间的距离感兴趣。这是下面的测试数据集。

 Row            Blood   x1    x2    x3    x4
 1              A       0.01  0.16  0.31  0.46
 2              A       0.02  0.17  0.32  0.47
 3              A       0.03  0.18  0.33  0.48

 4              B       0.05  0.20  0.35  0.49
 5              B       0.06  0.21  0.36  0.50
 6              B       0.07  0.22  0.37  0.51

 7              AB      0.09  0.24  0.39  0.52
 8              AB      0.1   0.25  0.4   0.53
 9              AB      0.11  0.26  0.41  0.54

 10             O       0.13  0.28  0.43  0.55
 11             O       0.14  0.29  0.44  0.56
 12             O       0.15  0.3   0.45  0.57

这里有两件事1)距离2)行

考虑此行组合。

对于第(1-4-7-10)行,距离 D =(d1,4 + d1,7 + d1,10 + d4,7 + d4,10 + d7,10)/ 6

{ Row1-Blood A, Row1-Blood B, Row1- Blood AB, Row1- Blood O } 

第{1,4,7,10}行之间的距离是根据此概念计算的

d1,4  = Distance between : Row1-Blood A, Row1-Blood B  
d1,7  = Distance between : Row1-Blood A, Row1-Blood AB  
d1,10 = Distance between : Row1-Blood A, Row1-Blood O       
d4,7  = Distance between : Row1-Blood B, Row1-Blood AB  
d4,10 = Distance between : Row1-Blood B, Row1-Blood O     
d7,10 = Distance between : Row1-Blood AB, Row1-Blood O     

d-1-4   = (0.01-0.05)^2 + (0.16-0.20)^2 + (0.31-0.35)^2 +  (0.46-0.49)^2             
d-1-7   = (0.01-0.09)^2 + (0.16-0.24)^2 + (0.31-0.39)^2 +  (0.46-0.52)^2             
d-1-10  = (0.01-0.13)^2 + (0.16-0.28)^2 + (0.31-0.43)^2 +  (0.46-0.55)^2             
d-4-7   = (0.05-0.09)^2 + (0.20-0.24)^2 + (0.35-0.39)^2 +  (0.49-0.52)^2   
d-4-10  = (0.05-0.13)^2 + (0.20-0.28)^2 + (0.35-0.43)^2 +  (0.49-0.55)^2     
d-7-10  = (0.09-0.13)^2 + (0.24-0.30)^2 + (0.39-0.43)^2 +  (0.52-0.55)^2  

同样,我对计算81个不同的行组合(3 * 3 * 3 * 3)之间的距离感兴趣。

最终的预期数据集应如下所示。

 Row         Distance
 1-4-7-10
 1-4-7-11     
 1-4-7-12

 1-4-8-10          
 1-4-8-11          
 1-4-8-12

 1-4-9-10                    
 1-4-9-11                    
 1-4-9-12

 1-5-7-10
 1-5-7-11     
 1-5-7-12

 1-5-8-10          
 1-5-8-11          
 1-5-8-12

 1-5-9-10                    
 1-5-9-11                    
 1-5-9-12  

 1-6-7-10
 .
 .
 .
 3-6-9-12

我知道我可以使用4个嵌套循环和列表来做到这一点。我想知道是否有更有效的方法来完成此任务。

2 个答案:

答案 0 :(得分:2)

与其他解决方案类似,但我认为您可以在应用于每种组合的函数中进行一些矩阵索引选择,以选择要累加的正确单元格:

请注意,默认的?dist计算为:

sqrt(sum((x_i - y_i)^2))

...使用中:

sum((x_i - y_i)^2)

...所以我将结果平方以下:

dd <- as.matrix(dist(dat[-(1:2)]))^2

apply(
  expand.grid(split(dat$Row, dat$Blood)),
  1,
  function(x) sum(dd[t(combn(x,2))])
)
#  [1] 0.1140 0.0972 0.0828 0.1212 0.1036 0.0884 0.1308 ...

检出与手动计算相对的第一个所需结果:

L <- c(
d1_4   = (0.01-0.05)^2 + (0.16-0.20)^2 + (0.31-0.35)^2 +  (0.46-0.49)^2,           
d1_7   = (0.01-0.09)^2 + (0.16-0.24)^2 + (0.31-0.39)^2 +  (0.46-0.52)^2,             
d1_10  = (0.01-0.13)^2 + (0.16-0.28)^2 + (0.31-0.43)^2 +  (0.46-0.55)^2,             
d4_7   = (0.05-0.09)^2 + (0.20-0.24)^2 + (0.35-0.39)^2 +  (0.49-0.52)^2,   
d4_10  = (0.05-0.13)^2 + (0.20-0.28)^2 + (0.35-0.43)^2 +  (0.49-0.55)^2,     
d7_10  = (0.09-0.13)^2 + (0.24-0.28)^2 + (0.39-0.43)^2 +  (0.52-0.55)^2
)
sum(L)
# 0.114

答案 1 :(得分:2)

“我的目标是找到相似的行。”

两种可能的方法:

1)k均值,用于将所有数据分为k个不同的聚类,这些聚类被确定为找到距每个聚类的质心最小的距离。

blood_fake$cluster_assignment <- kmeans(blood_fake[, -c(1:2)], centers = 10)$cluster

library(ggplot2)  
ggplot(blood_fake, aes(x1, x2, color = as.factor(cluster_assignment))) + 
  geom_point(size = 0.3) + 
  theme_minimal() + 
  theme(legend.position = "bottom")

enter image description here

2)fuzzyjoin::distance_left_join可用于查找距离阈值内的匹配项。如果我在子集上单独运行,那么在具有4 GB RAM的旧计算机上可以处理10,000行,这对我来说还可以,但是当我一次尝试全部操作时就冻结了。

library(tidyverse); library(fuzzyjoin)
blood_fake %>%
  filter(type == "A") %>%
  distance_left_join(blood_fake,  by = c("x1", "x2", "x3", "x4"), distance_col = "dist", max_dist = 0.05) %>%
  filter(dist > 0) %>%
  arrange(dist)

#   row.x type.x        x1.x        x2.x        x3.x        x4.x row.y type.y       x1.y        x2.y        x3.y        x4.y        dist
#1   8362      A 0.055618062 0.008783874 0.001162073 0.145280936  4786      B 0.05807814 0.009353543 0.002046247 0.146829206 0.003091180
#2   4284      A 0.163417186 0.032845642 0.114224202 0.339505310  2060     AB 0.16676132 0.031621044 0.115635984 0.339447690 0.003831363
#3   8338      A 0.194389332 0.070951537 0.132582667 0.004634504  4839     AB 0.19793256 0.067944898 0.130012004 0.005525959 0.005384918
#4   6849      A 0.277700944 0.027618307 0.034390833 0.158798952  7698      A 0.27344845 0.025502562 0.033016888 0.160972663 0.005401185
#5   7698      A 0.273448453 0.025502562 0.033016888 0.160972663  6849      A 0.27770094 0.027618307 0.034390833 0.158798952 0.005401185
#6   4281      A 0.281189896 0.323468620 0.107589336 0.096526579  6251      A 0.27891482 0.321343667 0.109619143 0.100667052 0.005563725

测试数据

n <- 10000
set.seed(42)
blood_fake <- data.frame(row = 1:n,
                         type = sample(c("A","B","AB","O"), n, replace = T),
                         x1 = runif(n, min = 0, max = 0.5),
                         x2 = runif(n, min = 0, max = 0.5),
                         x3 = runif(n, min = 0, max = 0.5),
                         x4 = runif(n, min = 0, max = 0.5)
                         )