如何根据一组条件(包括自我参照匹配)删除行对?

时间:2019-05-02 16:29:24

标签: r duplicates

我正在处理处方药声明数据集。当索赔被取消时,数据系统不仅会删除观察值,还会创建具有相同处方编号但提供的日期显示为负数的新观察值。

例如

          DaysSupply RxNumber DateSupplied
        1        -10        1         2018
        2         10        1         2018

我要删除数据集的配对行,如果它们1)共享相同的处方编号(RxNumber),2)如果它们具有相同的处方日期(DateSupplied),以及3)如果DaysSupply是相应的正值和负值(例如+10和-10)。在这种情况下,处方编号是患者专用的密钥。

一个复杂的问题是,可以从一个处方编号中赎回多个药品填充,因此我想对符合上述条件的正当重复进行重复数据删除,而不是对共享相同处方编号的所有行进行重复数据删除。

我不确定应该采用哪种方法。我已经考虑过使用一个长的if语句/ dedpulicate命令,但是我不确定如何指示R对符合上述条件的一对仅重复数据删除。

v1 <- c(-10,10,10,-8,8,-6,6,5,4)
v2 <- c(1,1,1,2,2,3,4,9,9)
v3 <- c(2018, 2018, 2018, 2018, 2017, 2016, 2016, 2015, 2014)
df <- data.frame("DaysSupply" = v1, "RxNumber" = v2, "DateSupplied" = v3)

  DaysSupply RxNumber DateSupplied
1        -10        1         2018
2         10        1         2018
3         10        1         2018
4         -8        2         2018
5          8        2         2017
6         -6        3         2016
7          6        4         2016
8          5        9         2015
9          4        9         2014

我想要的输出是:

  DaysSupply RxNumber DateSupplied
3         10        1         2018
4         -8        2         2018
5          8        2         2017
6         -6        3         2016
7          6        4         2016
8          5        9         2015
9          4        9         2014

有什么想法吗?

2 个答案:

答案 0 :(得分:0)

使用示例数据的dplyr解决方案。

我在最后添加了一些行,以使其看起来更好,并使输出与您的输出相同。我确定有人可以剪掉一两行,并使重复删除过程更简洁一些,但是我可以按照您的要求来做。

df %>% 
  dplyr::mutate(AbsDaysSupply = abs(DaysSupply)) %>% 
  dplyr::group_by(RxNumber, DateSupplied, AbsDaysSupply) %>% 
  dplyr::arrange(RxNumber, DateSupplied, AbsDaysSupply, DaysSupply) %>% 
  dplyr::mutate(sum = cumsum(DaysSupply)) %>% 
  dplyr::filter(!(sum <= 0 & dplyr::n() > 1)) %>% 
  dplyr::ungroup() %>% 
  dplyr::select(-AbsDaysSupply, -sum) %>% 
  dplyr::arrange(desc(DateSupplied), RxNumber)
# A tibble: 7 x 3
  DaysSupply RxNumber DateSupplied
       <dbl>    <dbl>        <dbl>
1         10        1         2018
2         -8        2         2018
3          8        2         2017
4         -6        3         2016
5          6        4         2016
6          5        9         2015
7          4        9         2014

答案 1 :(得分:0)

library(tidyverse)
v1 <- c(-10,10,10,-8,8,-6,6,5,4)
v2 <- c(1,1,1,2,2,3,4,9,9)
v3 <- c(2018, 2018, 2018, 2018, 2017, 2016, 2016, 2015, 2014)
df <- data.frame("DaysSupply" = v1, "RxNumber" = v2, "DateSupplied" = v3)

df %>% 
  # Create an absolute column for matching
  mutate(DaysSupplyAbs = abs(DaysSupply)) %>%
  # Orderto make matches adjacent, but with the positive first
  arrange(RxNumber, DaysSupplyAbs, -DaysSupply) %>%
  # Limit matches to Year and RxNumber
  group_by(RxNumber, DateSupplied) %>%
  # Get the nex (lead) and prior(Days Supply values)
  mutate(DaysSupplyLead = lead(DaysSupply),
          DaysSupplyLag  = lag(DaysSupply)) %>%
  # Identify the reversed and reversal
  mutate(reversed = if_else(is.na(DaysSupplyLead), FALSE, DaysSupply ==  -DaysSupplyLead)) %>%
  mutate(reversal = if_else(is.na(lag(reversed)), FALSE, lag(reversed) )) %>%
  ungroup() %>%
  # Filter out the reversals and the reveresed
  filter(!(reversed | reversal)) %>%
  select(DaysSupply, RxNumber, DateSupplied, reversed, reversal )

结果:

#   DaysSupply RxNumber DateSupplied reversed reversal
#        <dbl>    <dbl>        <dbl> <lgl>    <lgl>   
# 1         10        1         2018 FALSE    FALSE   
# 2          8        2         2017 FALSE    FALSE   
# 3         -8        2         2018 FALSE    FALSE   
# 4         -6        3         2016 FALSE    FALSE   
# 5          6        4         2016 FALSE    FALSE   
# 6          4        9         2014 FALSE    FALSE   
# 7          5        9         2015 FALSE    FALSE