我有一个数据集,我正在尝试使用SelectKBest
和Chi2
来获取功能重要性,但是SelectKBest
给出的功能得分为nan
数据文件和代码文件位于this链接中
# Path to the data file
file_path = r"D:\Data_Sets\Mobile_Prices\data.csv"
# Reading the data from the Southern Second Order file, and also passing the column names to south_data data frame
south_data = pd.read_csv(file_path)
# Printing the number of data points and the number of columns of south_data data frame
print("The number of data points in the data :", south_data.shape[0])
print("The features of the data :", south_data.shape[1])
# Printing the head of south_data data frame
print(south_data.head())
# Check for the nulls
print(south_data.isnull().sum())
# Separate the x and y
x = south_data.drop("tss", axis = 1)
y = south_data["tss"]
# Find the scores of features
bestfit = SelectKBest(score_func=chi2, k=5)
features = bestfit.fit(x,y)
x_new = features.transform(x)
print(features.scores_)
# The output of features.scores_ is displayed as
# array([nan, nan, nan, nan, nan, nan, nan, nan, nan])
答案 0 :(得分:2)
目标变量中的所有值为1
。这就是在您的nan
中使用scores_
值的原因。因此,请验证您的目标变量。
仅供说明:
>>> from sklearn.datasets import load_digits
import numpy as np
>>> from sklearn.feature_selection import SelectKBest, chi2
>>> X, y = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> feature_selector = SelectKBest(chi2, k=20)
>>> X_new = feature_selector.fit_transform(X, np.ones(len(X)) )
>>> feature_selector.scores_
array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan])
答案 1 :(得分:1)
'bestfit'是一个对象,调用fit方法时不需要为它分配变量。试试:
# Find the scores of features
bestfit = SelectKBest(score_func=chi2, k=5)
bestfit.fit(x,y)
x_new = bestfit.transform(x)
print(bestfit.scores_)
或者,您可以同时调用fit和transform:
# Find the scores of features
bestfit = SelectKBest(score_func=chi2, k=5)
x_new = bestfit.fit_transform(x)
print(bestfit.scores_)
能解决您的问题吗?