1D-> 2D阵列W /法线曲线子阵列长度

时间:2019-05-01 21:52:02

标签: javascript arrays gaussian splice batching

我正在尝试将1D数组分解为2D数组,其中子数组的长度不同。这种变化应遵循高斯曲线(或丘形)。因此,假设我们制作的2D数组变量名为gaussianCurve。 gaussianCurve [0]和gaussianCurve [n]中的数组长度为1,而gaussianCurve [n / 2]则为参数“ maxArrayLength”提供的最大值。这迫使gaussianCurve索引的数量变为可变的。

说我有以下伪代码:

function (oneDimentionalArray, maxArrayLength) {
// oneDimentionalArray is ["A","B","C","D","E","F","G","H","I","J","K"]
// maxArrayLength is 5
// Currently working like this (i.e. "batches"):
// return [["A","B","C","D","E"],["F","G","H","I","J"],["K"]]
// would LIKE it to work like this
    gaussianCurve = []
    gaussianCurve.push(["A"])
    gaussianCurve.push(["B", "C"])
    gaussianCurve.push(["D", "E", "F", "G", "H"])
    gaussianCurve.push(["I", "J"])
    gaussianCurve.push(["K"])

    return  gaussianCurve
}

我为什么要这样的东西?进度条。

  1. 他们没有表明我正在立即取得进步
    1. 这是因为必须先完成第一项工作,然后栏才能移动
  2. 它们以95%以上的速度减速,有时甚至会以100%的速度保持
    1. 只是烦人

欢迎提出任何建议。我只是在脑海中看不到答案。

编辑:我觉得它的措词很差,所以我要改写它。

... gaussianCurve [0] .length和gaussianCurve [gaussianCurve.length-1] .length将为1,而gaussianCurve [gaussianCurve.length / 2] .length将达到“ maxArrayLength”。

输入:

function gaussianRefactor(["A","B","C","D","E","F","G","H","I","J","K"], 1)
function gaussianRefactor(["A","B","C","D","E","F","G","H","I","J","K"], 2)
function gaussianRefactor(["A","B","C","D","E","F","G","H","I","J","K"], 4)
function gaussianRefactor(["A","B","C","D","E","F","G","H","I","J","K"], 8)
function gaussianRefactor(["A","B","C","D","E","F","G","H","I","J","K"], 16)

输出:

[["A"],["B"],["C"],["D"],["E"],["F"],["G"],["H"],["I"],["J"],["K"]]
[["A"],["B","C"],["D","E"],["F","G"],["H","I"],["J"],["K"]]
[["A"],["B","C","D"],["E","F","G","H"],["I","J","K"]]
[["A"],["B","C","D","E","F","G","H","I"],["J","K"]]
[["A","B","C","D","E","F","G","H","I","J","K"]]

任何内部数组都不能超过maxArrayLength的长度

3 个答案:

答案 0 :(得分:2)

我给了它一个快速的镜头,它似乎起作用了。一些潜在的改进:

  • 输入功能检查
  • 它将所有可能的剩余值放入中间垃圾箱。对于偶数总数的仓,它将受益于一些平衡。在那之后,尝试根据输入数据中的原始索引对每个bin进行排序可能是一件好事,因为现在事情可能最终会乱序。但是,如果这只是为了使进度条具有非线性分布的作业,则顺序可能无关紧要。

function probability(s, m, x) {
	var eExp = -Math.pow(x - m, 2) /
		(2 * Math.pow(s, 2));
	return 1/(Math.sqrt(2*Math.PI) * s) *
		Math.pow(Math.E, eExp);
}

function gassianArray(input, nBins) {
	// first try to determine a reasonable value of s so that the outer bins have a value
	var s = 0.1;
	var sMax = 10;
	var m = (nBins - 1) / 2.0;
	var outerBinMinimum = 1 / input.length;
	var p = 0;
	while (true && s <= sMax) {
		p = probability(s, m, 0);
		if (p >= outerBinMinimum) {
			break;
		} else {
			s += 0.1;
		}
	}

	// holds arrays
	var output = [];
	// holds desired array sizes
	var outputLengths = [];
	// fill these based on probability density
	for (var b=0; b<nBins; b++) {
		var n = Math.floor(probability(s, m, b) * input.length);
		output.push([]);
		outputLengths.push(n);
	}

	// fill arrays from outside, leaving extra values for the middle
	var midIndex = Math.floor(m);
	// left side
	for (var i=0; i<midIndex; i++) {
		for (var j=0; j<outputLengths[i]; j++) {
			output[i].push(input.shift());
		}
	}
	// right side
	for (var i=nBins-1; i>=midIndex; i--) {
		for (var j=0; j<outputLengths[i]; j++) {
			output[i].push(input.pop());
		}
		output[i].reverse();
	}
	// whatever remains goes in the "middle"
	while (input.length !== 0) {
		output[midIndex].unshift(input.pop());
	}

	return output;
}

var input = ["A","B","C","D","E","F","G","H","I","J","K"];
var n = 5;
console.log(gassianArray(input, n));
/*
[ [ 'A' ],
  [ 'B', 'C' ],
  [ 'E', 'D', 'F', 'G', 'H' ],
  [ 'I', 'J' ],
  [ 'K' ] ]
*/


var input = ["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"];
var n = 6;
console.log(gassianArray(input, n));
/*
[ [ 'A' ],
  [ 'B', 'C', 'D', 'E' ],
  [ 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N' ],
  [ 'O', 'P', 'Q', 'R', 'S', 'T', 'U' ],
  [ 'V', 'W', 'X', 'Y' ],
  [ 'Z' ] ]
*/

答案 1 :(得分:1)

非常有趣的挑战。 :)

我玩了一点,这是我想出的:

function chunk(arr, start, n) {
  if (arr.length < n) {
    return null;
  }

  return arr.splice(start, n);
}

function gaussianArray(arr, max) {
  const len = arr.length;

  if (max > len) {
    return [arr];
  }

  const curve = [];

  // Extract middle.
  const mid = Math.floor(len / 2);
  const startIndex = mid - (max / 2) + 1;
  const highest = arr.splice(startIndex, max);

  curve.push(highest);

  // Splits the rest in 2 arrays; left side and right side, middle already excluded.
  const leftArr = arr.slice(0, startIndex);
  const rightArr = arr.slice(startIndex, len);

  let leftMax = max;
  let rightMax = max;

  // Adds chunks from left side.
  while (leftArr.length) {
    const leftChunk = chunk(leftArr, leftArr.length - leftMax, leftMax);

    if (leftChunk) {
      curve.unshift(leftChunk);
    } else {
      leftMax--;
    }
  }

  // Adds chunks from right side.
  while (rightArr.length) {
    const rightChunk = chunk(rightArr, 0, rightMax);

    if (rightChunk) {
      curve.push(rightChunk);
    } else {
      rightMax--;
    }
  }

  return curve;
}

console.log(JSON.stringify(gaussianArray(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 1)));
console.log(JSON.stringify(gaussianArray(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 2)));
console.log(JSON.stringify(gaussianArray(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 4)));
console.log(JSON.stringify(gaussianArray(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 8)));
console.log(JSON.stringify(gaussianArray(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 16)));

这不是您想要的,但是我认为它应该很接近解决进度条问题...

答案 2 :(得分:0)

这更符合我的想法。我非常不喜欢找到sigma的方式。我知道我应该对公式重新排序以进行计算,但是我尚未使它起作用。无论如何,这是“答案”,尽管它对于我在问题中作为示例提供的较小数组失败,但它成功完成了我需要做的事情。如果有人想改进,请告诉我。

var gaussianRefactor = function(srcOneDimentionalArray, srcMaxArrayLength) {
  var finalArray = [];
  if (srcOneDimentionalArray.length <= srcMaxArrayLength) {
    finalArray.push(srcOneDimentionalArray);
    return finalArray;
  }
  if (srcMaxArrayLength === 1) {
  for(var lengthOne = 0; lengthOne < srcOneDimentionalArray.length; lengthOne++)
    finalArray.push([srcOneDimentionalArray[lengthOne]]);
    return finalArray;
  }
  var maxArrayLength = srcMaxArrayLength;
  var oneDimentionalArray = srcOneDimentionalArray.slice(0);
  for (var x = srcMaxArrayLength; x > 1 && maxArrayLength / oneDimentionalArray.length > 0.3333; x--) {
    maxArrayLength--;
  }
  var standardChunkSize = srcOneDimentionalArray.length / maxArrayLength;
  var predictedSize = (3 * Math.floor(standardChunkSize)) % 2 === 0 ? 3 * Math.floor(standardChunkSize) + 1 : 3 * Math.floor(standardChunkSize);
  var predictedSizeCenter = Math.ceil(predictedSize / 2);
  var sigma = 0.2034185 * Math.pow(standardChunkSize, 1.963449);
  var multiplicand = 1 / (Math.sqrt(sigma) * Math.sqrt(2 * Math.PI));
  var centerGauss = maxArrayLength / multiplicand;
  var mu = 0;
  var delta;
  var fraction;
  var exponent;
  var full;
  var subArrayLength;
  var subArray;
  var notWideEnough = true;
  var maxElements;
  var maxAttempts = Math.max(Math.ceil(sigma), 100);
  var currentAttempts = 0;
  while (notWideEnough && currentAttempts < maxAttempts) {
    maxElements = 0;
    for (var j = 0; j < predictedSize; j++) {
      delta = (j - predictedSizeCenter) - mu;
      fraction = delta / Math.sqrt(sigma);
      exponent = -0.5 * Math.pow(fraction, 2);
      full = multiplicand * Math.exp(exponent);
      subArrayLength = Math.floor(full * centerGauss);
      maxElements += subArrayLength;
    }
    if (maxElements >= srcOneDimentionalArray.length) {
      notWideEnough = false;
    } else {
      sigma = sigma + sigma * 0.05;
    }
    currentAttempts++;
  }
  if (currentAttempts === maxAttempts) {
    return false;
  }

  for (var i = 0; i < predictedSize; i++) {
    delta = (i - predictedSizeCenter) - mu;
    fraction = delta / Math.sqrt(sigma);
    exponent = -0.5 * Math.pow(fraction, 2);
    full = multiplicand * Math.exp(exponent);
    subArrayLength = Math.floor(full * centerGauss);
    if (subArrayLength < 1 || oneDimentionalArray.length < 1) {
      continue;
    }
    subArray = oneDimentionalArray.slice(0, subArrayLength);
    oneDimentionalArray = oneDimentionalArray.slice(subArrayLength, oneDimentionalArray.length);
    finalArray.push(subArray);
  }
  return finalArray;
}

输入

gaussianRefactor(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 1)
gaussianRefactor(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 2)
gaussianRefactor(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 4)
gaussianRefactor(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 8)
gaussianRefactor(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"], 16)

输出

[["A"],["B"],["C"],["D"],["E"],["F"],["G"],["H"],["I"],["J"],["K"]]
[["A"],["B"],["C"],["D"],["E"],["F","G"],["H"],["I"],["J"],["K"]]
[["A"],["B"],["C","D"],["E","F","G"],["H","I"],["J"],["K"]]
[["A"],["B"],["C","D"],["E","F","G"],["H","I"],["J"],["K"]]
[["A","B","C","D","E","F","G","H","I","J","K"]]