为什么鉴别器和生成器的损失没有变化?

时间:2019-05-01 12:53:57

标签: python pytorch mnist loss generative-adversarial-network

我正在尝试为MNIST数据集实施通用对抗网络(GAN)。 我为此使用Pytorch。我的问题是,经过一个时期,鉴别者和生成者的损失就不会改变。

我已经尝试了另外两种方法来构建网络,但是它们会导致所有相同的问题:/

import os
import torch
import matplotlib.pyplot as plt
import matplotlib.gridspec as grd
import numpy as np
import torch.optim as optim
import torch.nn as nn 
import torch.nn.functional as F 
import torchvision #Datasets
from torchvision.utils import save_image
import torchvision.transforms as transforms
from torch.autograd import Variable
import pylab

#Parameter
batch_size = 64
epochs = 50000
image_size = 784
hidden_size = 392
sample_dir = 'samples'
save_dir = 'save'
noise_size = 100
lr = 0.001

# Image processing
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,),(0.5,))])

# Discriminator
D = nn.Sequential(
    nn.Linear(image_size, hidden_size),
    nn.ReLU(),
    nn.Linear(hidden_size, 1),
    nn.Sigmoid()
)

# Generator
G = nn.Sequential(
    nn.Linear(noise_size, hidden_size),
    nn.ReLU(),
    nn.Linear(hidden_size, image_size),
    nn.Sigmoid()
)

# Lossfunction and optimizer (sigmoid cross entropy with logits and Adam)
criterion = nn.BCEWithLogitsLoss()
d_optimizer = torch.optim.Adam(D.parameters(), lr = lr)
g_optimizer = torch.optim.Adam(G.parameters(), lr = lr)

def reset_grad():
    d_optimizer.zero_grad()
    g_optimizer.zero_grad()

# Statistics to be saved
d_losses = np.zeros(epochs)
g_losses = np.zeros(epochs)
real_scores = np.zeros(epochs)
fake_scores = np.zeros(epochs)

# Start training
total_step = len(data_loader)
for epoch in range(epochs):
    for i, (images, _) in enumerate(data_loader):
        if images.shape[0] != 64:
            continue
        images = images.view(batch_size, -1).cuda()
        images = Variable(images)
        # Create the labels which are later used as input for the BCE loss
        real_labels = torch.ones(batch_size, 1).cuda()
        real_labels = Variable(real_labels)
        fake_labels = torch.zeros(batch_size, 1).cuda()
        fake_labels = Variable(fake_labels)

        # Train discriminator

        # Compute BCE_WithLogitsLoss using real images 
        outputs = D(images)
        d_loss_real = criterion(outputs, real_labels)
        real_score = outputs

        # Compute BCE_WithLogitsLoss using fake images
        # First term of the loss is always zero since fake_labels == 0
        z = torch.randn(batch_size, noise_size).cuda()
        z = Variable(z)
        fake_images = G(z)
        outputs = D(fake_images)
        d_loss_fake = criterion(outputs, fake_labels)
        fake_score = outputs

        # Backprop and optimize
        # If D is trained so well, then don't update
        d_loss = d_loss_real + d_loss_fake
        reset_grad()
        d_loss.backward()
        d_optimizer.step()

        # Train generator 

        # Compute loss with fake images
        z = torch.randn(batch_size, noise_size).cuda()
        z = Variable(z)
        fake_images = G(z)
        outputs = D(fake_images)

        # We train G to maximize log(D(G(z)) instead of minimizing log(1 -D(G(z)))
        # For the reason, see the last paragraph of section 3. https://arxiv.org/pdf/1406.2661.pdf
        g_loss = criterion(outputs, real_labels)

        # Backprop and optimize
        # if G is trained so well, then don't update
        reset_grad()
        g_loss.backward()
        g_optimizer.step()

        # Update statistics

        d_losses[epoch] = d_losses[epoch]*(i/(i+1.)) + d_loss.item()*(1./(i+1.))
        g_losses[epoch] = g_losses[epoch]*(i/(i+1.)) + g_loss.item()*(1./(i+1.))
        real_scores[epoch] = real_scores[epoch]*(i/(i+1.)) + real_score.mean().item()*(1./(i+1.))
        fake_scores[epoch] = fake_scores[epoch]*(i/(i+1.)) + fake_score.mean().item()*(1./(i+1.))

    # print results
    print('Epoch [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}, D(x): {:.2f}, D(G(z)): {:.2f}' 
            .format(epoch, epochs, d_loss.item(), g_loss.item(), 
                    real_score.mean().item(), fake_score.mean().item()))

生成者和鉴别者的损失应该随着时代的变化而变化,但是没有变化。

Epoch [0/50000], d_loss: 1.0069, g_loss: 0.6927, D(x): 1.00, D(G(z)): 0.00
Epoch [1/50000], d_loss: 1.0065, g_loss: 0.6931, D(x): 1.00, D(G(z)): 0.00
Epoch [2/50000], d_loss: 1.0064, g_loss: 0.6931, D(x): 1.00, D(G(z)): 0.00
Epoch [3/50000], d_loss: 1.0064, g_loss: 0.6931, D(x): 1.00, D(G(z)): 0.00
Epoch [4/50000], d_loss: 1.0064, g_loss: 0.6931, D(x): 1.00, D(G(z)): 0.00
Epoch [5/50000], d_loss: 1.0064, g_loss: 0.6931, D(x): 1.00, D(G(z)): 0.00

感谢您的帮助。

1 个答案:

答案 0 :(得分:0)

我找到了解决问题的办法。 BCEWithLogitsLoss()和Sigmoid()不能一起使用,因为BCEWithLogitsLoss()包括Sigmoid激活。 因此,您可以不使用Sigmoid()而使用BCEWithLogitsLoss(),也可以使用Sigmoid()和BCELoss()