csv文件中包含以下数据:
Date City TruckA TruckB TruckC TruckD
Date1 City1 1 0 0 0
Date1 City2 0 0 1 0
Date1 City3 1 0 0 0
Date1 City4 0 0 1 0
Date2 City1 1 0 0 0
Date2 City2 0 1 0 0
Date2 City3 0 0 0 1
Date2 City4 1 0 0 0
Date2 City5 0 1 0 0
Date3 City1 1 0 0 0
Date3 City2 0 0 1 0
Date3 City3 1 0 0 0
Date3 City4 0 0 1 0
我可以使用以下代码成功绘制数据:
import pandas as pd
df = pd.read_csv("data.csv")
print(df)
df = df.set_index(["Date","City"])
df.unstack().plot(kind='bar', stacked=True)
我得到以下结果:
如您所见,颜色图例就像每对(城市,卡车)都有颜色。我希望图例仅依赖于卡车,并且理想情况下在每个城市的条形图上都有标签。
这可能吗?
答案 0 :(得分:3)
按照@Scott的好答案,您可以根据需要获取堆叠的列。
import matplotlib.pyplot as plt
cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']
df_out = df.unstack()
d = dict(zip(df.columns.get_level_values(0),cycle))
c = df_out.columns.get_level_values(0).map(d)
g=df_out.plot.bar(stacked=True, color=c, figsize=(10,8), edgecolor='k')
要添加标签,您需要找到合适的位置并反复进行标签。
这是一种实现方法:
h=0
x=0
unique_dates=df1.index.get_level_values(0).unique() # get the bars
city=df_out.iloc[x][df_out.iloc[x]!=0].dropna().index.get_level_values(1) #get the cities
for y,val in enumerate(df1.index.get_level_values(0)): #loop through the dates
if val==unique_dates[x]: #check the x position
g.text(x-0.05,1+h-0.5,"%s" % city[h])
h+=1
else: # move to next x coord, update city labels and add text for the next x coordinate (h=0)
x+=1
city=df_out.iloc[x][df_out.iloc[x]!=0].dropna().index.get_level_values(1) #get cities
g.text(x-0.05,1-0.5,"%s" % city[0])
h=1 # set h to 1 as we already printed for h=0
原始解决方案
for x ,date in enumerate(df_out.index):
h=0
city=df_out.iloc[x][df_out.iloc[x]!=0].dropna().index.get_level_values(1) #get cities
for y,val in enumerate(df.index.get_level_values(0)):
if val==date:
g.text(x,1+h-0.5,"%s" % city[h])
h+=1
else:
continue
答案 1 :(得分:2)
import matplotlib.pyplot as plt
cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']
df_out = df.unstack()
d = dict(zip(df.columns.get_level_values(0),cycle))
c = df_out.columns.get_level_values(0).map(d)
df_out.plot.bar(stacked=True, color=c, figsize=(10,8))
输出:
添加了边缘颜色以区分城市:
import matplotlib.pyplot as plt
cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']
df_out = df.unstack()
d = dict(zip(df.columns.get_level_values(0),cycle))
c = df_out.columns.get_level_values(0).map(d)
df_out.plot.bar(stacked=True, color=c, figsize=(10,8), edgecolor='k')
IIUC,我认为您正在寻找这样的东西:
df = df.set_index(["Date","City"])
df.sum(level=0).plot.bar(stacked=True, figsize=(10,8))
输出: