在Python中更改堆积的条形图图例

时间:2019-05-01 11:13:13

标签: python pandas dataframe matplotlib

csv文件中包含以下数据:

Date    City    TruckA  TruckB  TruckC  TruckD
Date1   City1   1   0   0   0
Date1   City2   0   0   1   0
Date1   City3   1   0   0   0
Date1   City4   0   0   1   0
Date2   City1   1   0   0   0
Date2   City2   0   1   0   0
Date2   City3   0   0   0   1
Date2   City4   1   0   0   0
Date2   City5   0   1   0   0
Date3   City1   1   0   0   0
Date3   City2   0   0   1   0
Date3   City3   1   0   0   0
Date3   City4   0   0   1   0

我可以使用以下代码成功绘制数据:

import pandas as pd

df = pd.read_csv("data.csv")

print(df)

df = df.set_index(["Date","City"])

df.unstack().plot(kind='bar', stacked=True)

我得到以下结果: Image

如您所见,颜色图例就像每对(城市,卡车)都有颜色。我希望图例仅依赖于卡车,并且理想情况下在每个城市的条形图上都有标签。

这可能吗?

2 个答案:

答案 0 :(得分:3)

按照@Scott的好答案,您可以根据需要获取堆叠的列。

import matplotlib.pyplot as plt
cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']
df_out = df.unstack()
d = dict(zip(df.columns.get_level_values(0),cycle))
c = df_out.columns.get_level_values(0).map(d)
g=df_out.plot.bar(stacked=True, color=c, figsize=(10,8), edgecolor='k')

要添加标签,您需要找到合适的位置并反复进行标签。
这是一种实现方法:

编辑:仅一个循环

h=0
x=0
unique_dates=df1.index.get_level_values(0).unique() # get the bars
city=df_out.iloc[x][df_out.iloc[x]!=0].dropna().index.get_level_values(1) #get the cities
for y,val in enumerate(df1.index.get_level_values(0)): #loop through the dates
    if val==unique_dates[x]: #check the x position
        g.text(x-0.05,1+h-0.5,"%s" % city[h]) 
        h+=1
    else:                                             # move to next x coord, update city labels and add text for the next x coordinate (h=0)
        x+=1
        city=df_out.iloc[x][df_out.iloc[x]!=0].dropna().index.get_level_values(1) #get cities
        g.text(x-0.05,1-0.5,"%s" % city[0])
        h=1      # set h to 1 as we already printed for h=0

原始解决方案

for x ,date in enumerate(df_out.index):
    h=0
    city=df_out.iloc[x][df_out.iloc[x]!=0].dropna().index.get_level_values(1) #get cities
    for y,val in enumerate(df.index.get_level_values(0)):
        if val==date:
            g.text(x,1+h-0.5,"%s" % city[h])
            h+=1
        else:
            continue

image

答案 1 :(得分:2)

编辑

import matplotlib.pyplot as plt
cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']
df_out = df.unstack()
d = dict(zip(df.columns.get_level_values(0),cycle))
c = df_out.columns.get_level_values(0).map(d)
df_out.plot.bar(stacked=True, color=c, figsize=(10,8))

输出:

enter image description here

添加了边缘颜色以区分城市:

import matplotlib.pyplot as plt
cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']
df_out = df.unstack()
d = dict(zip(df.columns.get_level_values(0),cycle))
c = df_out.columns.get_level_values(0).map(d)
df_out.plot.bar(stacked=True, color=c, figsize=(10,8), edgecolor='k')

enter image description here


IIUC,我认为您正在寻找这样的东西:

df = df.set_index(["Date","City"])
df.sum(level=0).plot.bar(stacked=True, figsize=(10,8))

输出:

enter image description here