为什么亏损会继续减少而绩效却保持不变?

时间:2019-04-30 22:29:32

标签: nlp pytorch bert-language-model

我正在使用bert-lstm-crf模型,https://github.com/huggingface/pytorch-pretrained-BERT/中的bert模型和lstm crf模型是我自己编写的。

在训练bert-lstm-crf模型25个时期后,训练集,开发集和测试集的性能保持不变,但损失继续减少。我应该在哪里进行更改?

这是表现:

第25个世纪:

tensor(10267.6279, device='cuda:0')
(0.42706720346856614, 0.4595134955014995, 0.4426966292134832)
(0.43147208121827413, 0.4271356783919598, 0.42929292929292934)
(0.4460093896713615, 0.4668304668304668, 0.4561824729891957)

第26个时代:

tensor(10219.3398, device='cuda:0')
(0.44544364508393286, 0.4951682772409197, 0.46899163642101943)
(0.4469135802469136, 0.4547738693467337, 0.45080946450809467)
(0.45871559633027525, 0.4914004914004914, 0.4744958481613286)

第27个时代:

tensor(10169.0742, device='cuda:0')
(0.44544364508393286, 0.4951682772409197, 0.46899163642101943)
(0.4469135802469136, 0.4547738693467337, 0.45080946450809467)
(0.45871559633027525, 0.4914004914004914, 0.4744958481613286)

更多时代: 具有相同性能的更低的损耗:

(0.44544364508393286, 0.4951682772409197, 0.46899163642101943)
(0.4469135802469136, 0.4547738693467337, 0.45080946450809467)
(0.45871559633027525, 0.4914004914004914, 0.4744958481613286)

这确实是一个奇怪的问题,我不知道该如何处理。任何建议都会有很大帮助。

这里是相关代码:

  for epoch in tqdm(range(200)):

  {loss = train_one_epoch(dataloader=source_train_dataloader,
  model=model, optimizer=optimizer)

  train_perf = test_one_epoch(dataloader=source_train_dataloader_for_test,
  model=model)

  dev_perf = test_one_epoch(dataloader=source_dev_dataloader, model=model)

  test_perf = test_one_epoch(dataloader=source_test_dataloader, 
  model=model)

  base_result_loc = "bert_char_ps/bert_char_result"

  # store performance result

  add_model_result(
    base_result_loc,
    epoch,
    loss,
    train_perf,
    dev_perf,
    test_perf)
  }

性能应该随着损失而改变,但现在不会改变

1 个答案:

答案 0 :(得分:1)

我已经修改了BERT-NER模型的PyTorch implementation并添加了CRF。我有以下课程在我的情况下效果很好。

class BertWithCRF(BertPreTrainedModel):

    def __init__(self, config, labels, dropout=0.1):
        super(BertWithCRF, self).__init__(config)
        self.tagset_size = len(labels)
        self.tag_to_ix = {k: v for v, k in enumerate(labels)}
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(dropout)
        self.classifier = nn.Linear(config.hidden_size, self.tagset_size)
        self.apply(self.init_bert_weights)
        self.transitions = nn.Parameter(
            torch.zeros(self.tagset_size, self.tagset_size))
        self.transitions.data[self.tag_to_ix[START_TAG], :] = -10000
        self.transitions.data[:, self.tag_to_ix[STOP_TAG]] = -10000

    def _batch_forward_alg(self, feats, mask):
        assert mask is not None
        # calculate in log domain
        # feats is batch_size * len(sentence) * tagset_size
        # initialize alpha with a Tensor with values all equal to -10000.
        score = torch.Tensor(feats.size(0), self.tagset_size).fill_(-10000.)
        score[:, self.tag_to_ix[START_TAG]] = 0.
        if feats.is_cuda:
            score = score.cuda()
        mask = mask.float()
        trans = self.transitions.unsqueeze(0)  # [1, C, C]
        for t in range(feats.size(1)):  # recursion through the sequence
            mask_t = mask[:, t].unsqueeze(1)
            emit_t = feats[:, t].unsqueeze(2)  # [B, C, 1]
            score_t = score.unsqueeze(1) + emit_t + trans  # [B, 1, C] -> [B, C, C]
            score_t = batch_log_sum_exp(score_t)  # [B, 1, C] -> [B, C, C]
            score = score_t * mask_t + score * (1 - mask_t)
        score = batch_log_sum_exp(score + self.transitions[self.tag_to_ix[STOP_TAG]])
        return score  # partition function

    def _batch_score_sentence(self, feats, tags, mask):
        assert mask is not None
        score = torch.Tensor(feats.size(0)).fill_(0.)
        if feats.is_cuda:
            score = score.cuda()
        feats = feats.unsqueeze(3)
        mask = mask.float()
        trans = self.transitions.unsqueeze(2)
        add_start_tags = torch.empty(tags.size(0), 1).fill_(self.tag_to_ix[START_TAG]).type_as(tags)
        tags = torch.cat([add_start_tags, tags], dim=-1)
        for t in range(feats.size(1)):  # recursion through the sequence
            mask_t = mask[:, t]
            emit_t = torch.cat([h[t, y[t + 1]] for h, y in zip(feats, tags)])
            trans_t = torch.cat([trans[y[t + 1], y[t]] for y in tags])
            score += (emit_t + trans_t) * mask_t
        last_tag = tags.gather(1, mask.sum(1).long().unsqueeze(1)).squeeze(1)
        score += self.transitions[self.tag_to_ix[STOP_TAG], last_tag]
        return score

    def _batch_viterbi_decode(self, feats, mask):
        # initialize backpointers and viterbi variables in log space
        bptr = torch.LongTensor()
        score = torch.Tensor(feats.size(0), self.tagset_size).fill_(-10000.)
        score[:, self.tag_to_ix[START_TAG]] = 0.
        if feats.is_cuda:
            score = score.cuda()
            bptr = bptr.cuda()
        mask = mask.float()
        for t in range(feats.size(1)):  # recursion through the sequence
            mask_t = mask[:, t].unsqueeze(1)
            score_t = score.unsqueeze(1) + self.transitions  # [B, 1, C] -> [B, C, C]
            score_t, bptr_t = score_t.max(2)  # best previous scores and tags
            score_t += feats[:, t]  # plus emission scores
            bptr = torch.cat((bptr, bptr_t.unsqueeze(1)), 1)
            score = score_t * mask_t + score * (1 - mask_t)
        score += self.transitions[self.tag_to_ix[STOP_TAG]]
        best_score, best_tag = torch.max(score, 1)

        # back-tracking
        bptr = bptr.tolist()
        best_path = [[i] for i in best_tag.tolist()]
        for b in range(feats.size(0)):
            x = best_tag[b]  # best tag
            y = int(mask[b].sum().item())  # no. of non-pad tokens
            for bptr_t in reversed(bptr[b]):
                x = bptr_t[x]
                best_path[b].append(x)
            best_path[b].pop()
            best_path[b].reverse()

        best_path = torch.LongTensor(best_path)
        if feats.is_cuda:
            best_path = best_path.cuda()
        return best_path

    def _get_bert_features(self, input_ids, token_type_ids, attention_mask):
        sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        sequence_output = self.dropout(sequence_output)
        bert_feats = self.classifier(sequence_output)
        return bert_feats

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
        bert_feats = self._get_bert_features(input_ids, token_type_ids, attention_mask)
        if labels is not None:
            forward_score = self._batch_forward_alg(bert_feats, attention_mask)
            gold_score = self._batch_score_sentence(bert_feats, labels, attention_mask)
            return (forward_score - gold_score).mean()
        else:
            tag_seq = self._batch_viterbi_decode(bert_feats, attention_mask)
            return tag_seq