我有一个包含DateTime字段的数据集。我需要按hours
进行分组,并将每个组分发到具有以下结构的字典:
{year_1:
{month_1:
{week_1:
{day_1:
{hour_1: df_1, hour_2: df_2}
}
},
{week_2:
{day_1:
{hour_1: df_1}
}
}
},
{month_3:
{week_1:
{day_1:
{hour_1: df_1, hour_2: df_2}
}
}
},
year_2:
{month_5:
{week_1:
{day_1:
{hour_2: df_2}
}
}
}
}
为此,我正在使用以下代码:
import pandas as pd
df = df = pd.DataFrame({'date': [pd.datetime(2015,3,17,2), pd.datetime(2014,3,24,3), pd.datetime(2014,3,17,4)], 'hdg_id': [4041,4041,4041],'stock': [1.0,1.0,1.0]})
df.loc[:,'year'] = [x.year for x in df['date']]
df.loc[:,'month'] = [x.month for x in df['date']]
df.loc[:,'week'] = [x.week for x in df['date']]
df.loc[:,'day'] = [x.day for x in df['date']]
df.loc[:,'hour'] = [x.hour for x in df['date']]
result = {}
for to_unpack, df_hour in df.groupby(['year','month','day','week','hour']):
year, month, week, day, hour = to_unpack
try:
result[year]
except KeyError:
result[year] = {}
try:
result[year][month]
except KeyError:
result[year][month] = {}
try:
result[year][month][week]
except KeyError:
result[year][month][week] = {}
try:
result[year][month][week][day]
except KeyError:
result[year][month][week][day] = {}
result[year][month][week][day][hour] = df_hour
如您所见,这几乎是一种蛮力解决方案,而我一直在寻找更干净,更易理解的东西。此外,它也非常慢。我尝试了不同的分组方式(Python Pandas Group by date using datetime data),还尝试了对日期时间的每个组成部分(Pandas DataFrame with MultiIndex: Group by year of DateTime level values)进行多重处理。但是,问题始终是如何创建字典。理想情况下,我只想编写如下内容:
result[year][month][week][day][hour] = df_hour
但是据我所知,我首先需要初始化每个字典。
答案 0 :(得分:4)
result = {}
for to_unpack, df_hour in df.groupby(['year','month','day','week','hour']):
year, month, week, day, hour = to_unpack
result.setdefault(year, {}) \
.setdefault(month, {}) \
.setdefault(week, {}) \
.setdefault(day, {}) \
.setdefault(hour, df_hour)
您也可以将dict
子类化
class Fict(dict):
def __getitem__(self, item):
return super().setdefault(item, type(self)())
result = Fict()
for to_unpack, df_hour in df.groupby(['year','month','day','week','hour']):
year, month, week, day, hour = to_unpack
result[year][month][week][day][hour] = df_hour