我有两个训练有素的模型。
Model_1 = Inception Model with Imagenet Dataset (1000 classes)
My_Model = Inception Model trained with a custom dataset (20 classes)
通过转移学习和微调
我想在一个新层中合并两个模型(Model_1
和My_Model
)的输出。
新层应使用一些二进制分类器来判断是基于输入图像使用Model_1
还是My_Model
进行预测。
例如:
如果我尝试预测“狗”图像,则将两个模型组合在一起的二进制分类器应该说我需要使用Model_1
来预测Dog图像(因为My_Model
数据集没有经过训练狗图片),而Model_1
受狗图片训练。
谁能告诉我如何实现这一目标?一些示例实现或代码片段将很有帮助。
谢谢
答案 0 :(得分:0)
为此,您需要创建一个组合模型,然后在另一个自定义数据集上训练该组合模型,这是该组合模型的外观示例。要制作数据集,只需拍摄每张图像并确定要使用的模型,然后就可以训练组合模型的输出,从而为一个模型提供正值,为另一个模型提供负值。希望对您有帮助
import numpy as np
import pandas as pd
import keras
from keras.layers import Dense, Flatten, Concatenate
from tensorflow.python.client import device_lib
# check for my gpu
print(device_lib.list_local_devices())
# making some models like the ones you have
input_shape = (10000, 3)
m1_input = Input(shape = input_shape, name = "m1_input")
fc = Flatten()(m1_input)
m1_output = Dense(1000, activation='sigmoid',name = "m1_output")(fc)
Model_1 = Model(m1_input,m1_output)
m2_input = Input(shape = input_shape, name = "m2_input")
fc = Flatten()(m2_input)
m2_output = Dense(20, activation='sigmoid',name = "m2_output")(fc)
My_Model = Model(m2_input,m2_output)
# set the trained models to be untrainable
for layer in Model_1.layers:
layer.trainable = False
for layer in My_Model.layers:
layer.trainable = False
#build a combined model
combined_model_input = Input(shape = input_shape, name = "combined_model_input")
m1_predict = Model_1(combined_model_input)
m2_predict = My_Model(combined_model_input)
combined = Concatenate()([m1_predict, m2_predict])
fc = Dense(500, activation='sigmoid',name = "fc1")(combined)
fc = Dense(100, activation='sigmoid',name = "fc2")(fc)
output_layer = Dense(1, activation='tanh',name = "fc3")(fc)
model = Model(combined_model_input, output_layer)
#check the number of parameters that are trainable
print(model.summary())
#psudocode to show how to make a training set for the combined model:
combined_model_y= []
for im in images:
if class_of(im) in list_of_my_model_classes:
combined_model_y.append(1)
else:
combined_model_y.append(-1)
combined_model_y = np.array(combined_model_y)
# then train the combined model:
model.compile('adam', loss = 'binary_crossentropy')
model.fit(images, combined_model_y, ....)