我正在开发一个具有客户端(html&js)和服务器(烧瓶)的应用程序 客户端将打开Webcam(HTML5 api)->向服务器发送视频流->服务器将返回带有json /文本流的其他流
我不想做池化。
我正在研究有关视频流的内容,但是我发现的每一篇文章和示例或Internet都使用OpenCV的网络摄像头或本地视频,并确实获取了实时网络摄像头的视频并发送到服务器。
这是我发现的主要例子
服务器:
from flask import Flask, render_template, Response
import cv2
app = Flask(__name__)
camera = cv2.VideoCapture(0) # I can't use a local webcam video or a local source video, I must receive it by http in some api(flask) route
def gen_frames(): # generate frame by frame from camera
while True:
success, frame = camera.read() # read the camera frame
if not success:
break
else:
ret, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') # concat frame one by one and show result
@app.route('/video_feed')
def video_feed():
"""Video streaming route. Put this in the src attribute of an img tag."""
return Response(gen_frames(),
mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/')
def index():
"""Video streaming home page."""
return render_template('index.html')
if __name__ == '__main__':
app.run(host='0.0.0.0')
客户: camera.js
//--------------------
// GET USER MEDIA CODE
//--------------------
navigator.getUserMedia = ( navigator.getUserMedia ||
navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia ||
navigator.msGetUserMedia);
var video;
var webcamStream;
function startWebcam() {
if (navigator.getUserMedia) {
navigator.getUserMedia (
// constraints
{
video: true,
audio: false
},
// successCallback
function(localMediaStream) {
video = document.querySelector('video');
video.src = window.URL.createObjectURL(localMediaStream);
webcamStream = localMediaStream;
},
// errorCallback
function(err) {
console.log("The following error occured: " + err);
}
);
} else {
console.log("getUserMedia not supported");
}
}
//---------------------
// TAKE A SNAPSHOT CODE
//---------------------
var canvas, ctx;
function init() {
// Get the canvas and obtain a context for
// drawing in it
canvas = document.getElementById("myCanvas");
context = canvas.getContext('2d');
}
function snapshot() {
// Draws current image from the video element into the canvas
context.drawImage(video, 0,0, canvas.width, canvas.height);
webcamStream.stop();
var dataURL = canvas.toDataURL('image/jpeg', 1.0);
document.querySelector('#dl-btn').href = dataURL;
$.ajax({
type: "POST",
contentType: false,
cache: false,
processData: false,
async: false,
url: "/upload",
data: {
imgBase64: dataURL
}
}).done(function(o) {
console.log('saved');
// If you want the file to be visible in the browser
// - please modify the callback in javascript. All you
// need is to return the url to the file, you just saved
// and than put the image in your browser.
});
}
index.html
<!DOCTYPE html>
<html>
<head>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.0/jquery.min.js"></script>
<script src="camera.js"></script>
</head>
<body onload="init();">
<h1>Take a snapshot of the current video stream</h1>
Click on the Start WebCam button.
<p>
<button onclick="startWebcam();">Start WebCam</button>
<button type="submit" id="dl-btn" href="#" download="participant.jpeg" onclick="snapshot();">Take Snapshot</button>
</p>
<video onclick="snapshot(this);" width=400 height=400 id="video" controls autoplay></video>
<p>
Screenshots : <p>
<canvas id="myCanvas" width="400" height="350"></canvas>
</body>
</html>
另一个问题是我无法与快照建立池,我需要将视频流发送到服务器以在其中处理帧。
有人知道如何将WebCam视频流发送到烧瓶?
tks
答案 0 :(得分:1)
嘿,这可能会帮助你在烧瓶中进行视频流
#!/usr/bin/env python
from flask import Flask, render_template, Response
from camera import Camera
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
def gen(camera):
while True:
frame = camera.get_frame()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
@app.route('/video_feed')
def video_feed():
return Response(gen(Camera()),
mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
app.run(host='0.0.0.0', debug=True)
答案 1 :(得分:0)
您可能应该在流生成器周围使用 stream_with_context
来流式传输您的响应。您无法返回常规响应,因为有任何信息告诉客户端不要关闭连接。
https://flask.palletsprojects.com/en/1.1.x/api/#flask.stream_with_context